

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

TOWARDS AN INTEROPERABILITY ONTOLOGY FOR
SOFTWARE DEVELOPMENT TOOLS

by

Neji Hasni

March 2003

 Thesis Advisor: Shing Man-Tak
 Thesis Co-Advisor: Joseph Puett
 Second Reader: Richard Riehle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is est imated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burde n estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington
DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Towards an Interoperability Ontology for
Software Development Tools

6. AUTHOR(S) Neji Hasni

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The automation of software development has long been a goal of software engineering to increase efficiency

of the development effort and improve the software product. This efficiency (high productivity with less software
faults) results from best practices in building, managing and tes ting software projects via the use of these automated
tools and processes. However, each software development tool has its own characteristics, semantics, objects, and
concepts. While there have been significant results achieved by use of automated software development tools (coming
mainly from the widespread increase of customers’ adoption of these tools), there remains many challenging obstacles:
lack of communication between the different software development tools, poor shared understanding; use of di fferent
syntax and concepts between tools, limits in interoperability between tools, absence of a unifying conceptual models
and ideas between tools, and redundant work and cross purposes between tools.

The approach undertaken in this thesis to overcome th ese obstacles was to construct a “pilot” ontology that is
extensible. We applied the Feature-Oriented Domain Analysis approach to capture the commonalities between two
software development tools (Rational Software Corporation's RequisitePro, a main -stream, complex, commercial tool),
and a software prototyping tool (the Software Engineering Automation tool (SEATools), a research model with tool
support for developing executable software prototypes) and developed an ontology for the software development tool s
using the Protégé -2000 System. The ontology expressed in UML, promotes interoperability and enhanced
communication.

15. NUMBER OF
PAGES

271

14. SUBJECT TERMS
Software Engineering, Computer Science, Management, Ontologies

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2 -89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TOWARDS AN INTEROPERABILITY ONTOLOGY FOR SOFTWARE
DEVELOPMENT TOOLS

Neji Hasni
Lieutenant, Tunisian Navy

B.S., Tunisian Naval Academy, 1989
Diplôme d’Étude Approfondi, Tunisian Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Neji Hasni

Approved by: Shing Man-Tak

Thesis Advisor

Joseph Puett
Thesis Co-Advisor

Richard Riehle
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The automation of software development has long been a goal of software

engineering to increase efficiency of the development effort and improve the software

product. This efficiency (high productivity with less software faults) results from best

practices in building, managing and testing software projects via the use of these

automated tools and processes. However, each software development tool has its own

characteristics, semantics, objects, and concepts. While there have been significant

results achieved by use of automated software development tools (coming mainly from

the widespread increase of customers’ adoption of these tools), there remains many

challenging obstacles: lack of communication between the different software

development tools, poor shared understanding; use of different syntax and concepts

between tools, limits in interoperability between tools, absence of a unifying conceptual

models and ideas between tools, and redundant work and cross purposes between tools.

The approach undertaken in this thesis to overcome these obstacles was to

construct a “pilot” ontology that is extensible. We applied the Feature-Oriented Domain

Analysis Approach to capture the commonalities between two software development

tools (Rational Software Corporation's RequisitePro, a main-stream, complex,

commercial tool), and a software prototyping tool (the Software Engineering Automation

tool (SEATools), a research model with tool support for developing executable software

prototypes) and developed an ontology for the software development tools using the

Protégé-2000 system. The ontology, expressed in UML, promotes interoperability and

enhanced communication.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION................................ 1
A. MOTIVATION AND PURPOSE OF THE RESEARCH EFFORT......... 1
B. STATEMENT OF THE RES EARCH QUESTION 3
C. CONTRIBUTIONS 3
D. INTRODUCTION TO ONTOLOGIES 5
E. SUMMARY 10

II. FOUNDATION AND RELATED WORK 11
A. INTRODUCTION................................ 11
B. FOUNDATION WORK................................ 11

1. Software Tool Interope rability [PUET02, 03] 11
a. Summary................................ 11
b. Concepts Useful to the Thesis................................ 12

2. Software Evolution [HARN99c]................................ 12
a. Summary................................ 12
b. Concepts Useful to the Thesis................................ 14

3. Object-Oriented Model for Interoperability
(OOMI)[YOUN02]................................ 14
a. Summary................................ 14
b. Concepts Useful to the Thesis................................ 16

4. Ontologies: Principles, Methods and Applications [USCH96]..... 17
a. Summary................................ 17
b. Concepts Useful to the Thesis................................ 20

5. UML as an Ontology Description Language [CRAN01]............. 21
a. Summary................................ 21
b. Concepts Useful to the Thesis................................ 21

6. Overview of Protégé [PROT02] 22
a. Summary................................ 22
b. Concepts Useful to the Thesis................................ 25

C. RELATED WORK................................ 26
1. Domain Ontologies in Software Engineering [MUSE98] 26

a. Summary................................ 26
b. Concepts Related to the Thesis................................ 27

2. DARPA Agent Markup Language [DAML02] 27
a. Summary................................ 27
b. Concepts Related to the Thesis................................ 28

D. CONCLUSION................................ 28

III. METHODOLOGY 29
A. INTRODUCTION................................ 29
B. RESEARCH METHOD................................ 29

1. Step 1 -- Purpose of the Ontology 29

 viii

2. Step 2 -- Feature Modeling................................ 30
a. Overview of Feature Modeling 30
b. Feature Modeling................................ 33
c. Feature Tree of Selected Software Engineering Tools

(RequisitePro and SEATools) 34
3. Step 3 – Establishing Commonalities................................ 35
4. Step 4 – Tool Ontologies 35
5. Step 5 - UML Representation of the Domain 36
6. Step 6 -- Documentation 36

C. CONCLUSION................................ 36

IV. ESSENTIAL TOOL CHARACTERISTICS 39
A. INTRODUCTION................................ 39
B. DESCRIPTION OF THE RATIONAL REQUISITEPRO 39

1. RequisitePro Feature Analysis 41
2. Key Functions of RequisitePro 43
3. Feature Tree of RequisitePro 43
4. Ontology List................................ 45

C. SEATOOLS................................ 49
1. Introduction 49
2. Description of the Software Engineering Automation Tools

(SEATools)................................ 49
3. Evolution of the SEATools 50
4. Summary of Functionality 53
5. Feature Analysis 53
6. SEATools Ontology List 56

D. COMMON CHARACTERISTI CS OF THE TOOLS 61
E. CONCLUSION................................ 63

V. THE SOFTWARE DEVELOPMENT TOOL ONTOLOGY 65
A. INTRODUCTION................................ 65
B. OVERVIEW OF UML 65
C. UML DESCRIPTION OF REQUISITEPRO ONTOLOGY 66

1. Class Diagram: Application 68
2. Class Diagram: Package 69
3. Class Diagram: Project Data................................ 70
4. Class Diagram: Project Structure 72
5. Class Diagram: Project Security................................ 74
6. Class Diagram: Requirements 75

D. UML DESCRIPTION OF THE SEATOOLS ONTOLOGY 77
1. The PSDL Package................................ 79
2. The Graph Editor Package 80
3. The PSDL Builder Package................................ 82
4. The Caps Main Package 83

E. UML DESCRIPTION OF THE HIGH LEVEL ONTOLOGY 85
1. Class Diagram: Artifact 85
2. Class Diagram: Activity 87

 ix

3. Class Diagram: Actor 88
F. UML DESCRIPTION OF THE INTER-RELATIONSHIPS

BETWEEN THE THREE ONTOLOGIES 88
1. Class Diagram: Communication 89
2. Class Diagram: Prototype 90
3. Class Diagram: Creation 91
4. Class Diagram: Actor................................ 92
5. Class Diagram: Documentation................................ 93
6. Class Diagram: Requirements 94
7. Class Diagram: Model................................ 96
8. Class Diagram: Security 97

G. SUMMARY 97

VI. CONCLUSIONS 99

APPENDIX A. REQUISITEPRO FEATURE TREE................................105

APPENDIX B. SEATOOLS FEATURE TREE................................117

APPENDIX C. CLASS HIERARCHY FOR ONTOLOGY-REQUISITEPRO
PROJECT133

APPENDIX D. CLASS HIERARCHY FOR SEATOOLS_ONTOLOGY PROJECT223

APPENDIX E. CLASS HIERARCHY FOR HIGH_LEVEL_ONTOLOGY
PROJECT245

LIST OF REFERENCES249

INITIAL DISTRIBUTION LIST................................253

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Software Evolution Processes with CASES [HARN99c]. 13
Figure 2. Federation Interoperability Object Model [YOUN02]. 15
Figure 3. Middleware Translator Implementation [YOUN02]. 16
Figure 4. Tool Set Architecture [USCH98]. 20
Figure 5. Protégé Screen Shot of a Slot Interface with its Different Characteristics. 23
Figure 6. Classes and Related Slots. 24
Figure 7. Feature Model of a Lighthouse System. 31
Figure 8. Subset of the RequisitePro Feature Tree................................. 44
Figure 9. General Structure of the SEATools Environment [USER02]. 51
Figure 10. Iterative Prototyping Process [LUQI02]................................. 52
Figure 11. Subset of the SEATools Feature Tree. 55
Figure 12. Timing Constraints Subset of the SEATools Feature T ree. 56
Figure 13. Relationship Between the Classes of the Three Ontologies........................ 66
Figure 14. UML Description of RequisitePro Ontology................................. 68
Figure 15. Class Diagram: Application. 69
Figure 16. Class Diagram: Package. 70
Figure 17. Class Diagram Project Data. 71
Figure 18. Class Diagram: Project Structure. 73
Figure 19. Class Diagram: Project Security. 75
Figure 20. Class Diagram: Requirements. 76
Figure 21. UML Description of the SEATools Ontology 78
Figure 22. The PSDL Package................................. 79
Figure 23. The Graph Editor Package. 81
Figure 24. The PSDL Builder Package. 82
Figure 25. The Caps Main Package. 84
Figure 26. UML Description of the High Level Ontology. 85
Figure 27. Class Diagram Artifact................................. 86
Figure 28. Class Diagram Activity. 87
Figure 29. Class Diagram Actor. 88
Figure 30. Class Diagram: Communication. 90
Figure 31. Class Diagram: Prototype. 91
Figure 32. Class Diagram: Creation. 92
Figure 33. Class Diagram: Actor. 93
Figure 34. Class Diagram: Documentation. 94
Figure 35. Class Diagram: Requirements. 95
Figure 36. Class Diagram: Model. 96
Figure 37. Class Diagram: Security................................. 97
Figure 38. The Different Levels of the Software Development Tool Features.............102
Figure 39. RequisitePro Feature Tree.................................106
Figure 40. High-Level RequisitePro -Subset of the Feature Tree.107
Figure 41. Project Management RequisitePro Feature Tree’s Subset.108

 xii

Figure 42. Teams Management RequisitePro Feature Tree’s Subset.109
Figure 43. Documents Management RequisitePro Feature Tree’s Subset.110
Figure 44. Control Requirements Subset.111
Figure 45. Control Requirements Subset (Cont).112
Figure 46. Report Generation RequisitePro Feature Tree’s Subset.113
Figure 47. Treacability RequisitePro Feature Tree’s Subset.114
Figure 48. Treacability RequisitePro Feature Tree’s Subset (Cont).115
Figure 49. Non-Functional Features as RequisitePro Feature Tree’s Subset.116
Figure 50. SEATools’s Feature Tree.118
Figure 51. High-Level SEATools’ -Subset of the Feature Tree.119
Figure 52. Manage Prototype Feature Tree’s Subset.120
Figure 53. Develop Systems Feature Tree’s Subset.121
Figure 54. Essential Feature Tree’s Subset.122
Figure 55. Very Useful Feature Tree’s Subset.123
Figure 56. Develop Systems Feature Tree’s Subset (Con’t.)................................124
Figure 57. Build Prototype Feature Tree’s Subset.................................125
Figure 58. Automatically Generate Code Feature Tree’s Subset.126
Figure 59. Automatically Generate Code Feature Tree’s Subset (Cont).127
Figure 60. Model Editor Feature Tree’s Subset.128
Figure 61. User Interface Feature Tree’s Subset.129
Figure 62. Prototype Feature Tree’s Subset.130
Figure 63. Edit Feature Tree’s Subset.................................131

 xiii

LIST OF TABLES

Table 1. List of the Terms Defined in the Enterprise Ontology [ENTR02]. 19
Table 2. RequisitePro Ontology List................................. 49
Table 3. SEATools Ontology List. 60
Table 4. Common Characteristics for High-Level Software Development Tools

Ontology. 63

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

This thesis embodies ideas from guided work with instructors. In particular, my

work has been strongly influenced by my advisors: LTC Joseph Puett (U.S. Army) Naval

Postgraduate School, PhD candidate; Professor Man-Tak Shing; and Professor Richard

Riehle. I would like to thank them for their outstanding support and their valuable advice.

I also owe a large debt to many dedicated professionals, both known and

unknown to me, who had confidence in me and/or provided me with some knowledge in

the field of software engineering either directly or indirectly and /or contributed their

expertise to the Software engineering field. Dr. Luqi, Dr. Norm Schneidwind, Dr. Bret

Michael, and Dr. John Osmundson all contributed to my achievement.

Finally, I would like to thank my wife Ibtissem and my two children (Maha and

Khaled) for their sacrifice (quitting the job for my wife and stopping the Arabic school

for my children) and devoting themselves to my encouragement and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION AND PURPOSE OF THE RESEARCH EFFORT

The automation of software development has long been a goal of software

engineering to increase efficiency of the development effort and impr ove the software

product. This efficiency (high productivity with less software faults) results from best

practices in building, managing and testing software projects via the use of these

automated tools and processes. However, each software development tool has its own

characteristics, semantics, objects, and concepts. While there have been significant

results achieved by use of automated software development tools (coming mainly from

the widespread increase of customers’ adoption rate of these tools), there remains many

challenging obstacles:

• Lack of communication between the different software development tool,

• Poor shared understanding; use of different syntax and concepts between
tool,

• Limit of interoperability between tools,

• Absence of a unifying conceptual models and ideas between tools,

• Redundant work and cross purposes between tools.

These obstacles stem from different contexts, understandings, viewpoints and

assumptions that lead to wasted effort.

One way to overcome some of these obstacles is to establish a unifying contextual

framework for different software engineering tools -- an “ontology” which will unify the

different concepts and ideas in the domain. As such an ontology emerges; people,

organizations, and software systems will communicate with more efficiency. Creating an

ontology actually means determining the set of semantic categories which properly

reflect the particular conceptual organization of the domain of information, on which the

system must operate, thus optimizing the res ults (quantitatively and qualitatively) of the

shared information.

Recently, Young proposed an object-oriented methodology for establishing

interoperability between heterogeneous systems [YOUN02] that allows interaction

 2

between their different objects. This approach is ideal for resolving the differences

existing between different kinds of systems via an establishment of a high level

interoperability model (Federation Interoperability Object Model (FIOM)). The

establishment of such object federation between existing process models together with

the integration of the federation with an extended evolution model, will generate an

availability of inputs and outputs between subordinate models to each other.

The purpose of this research is to begin an investigation to address the problems

mentioned previously by identifying and defining the essential characteristics of two

software engineering tools: a Requirement's Engineering Tool (Rational Software

Corporation's Requisite®Pro, a main-stream, complex, commercial tool), and a software

prototyping tool (the Software Engineering Automation tool (SEATools), a research

model with tool support for developing executable software prototypes). The approach

undertaken was to construct a “pilot” ontology that might be extended in the future to

include other software development tools. The essential idea was to capture the

commonalities between these two tools and express them in such a way that would

promote interoperability and enhanced communication using Young’s int eroperability

model.

The approach in this portion of the investigation was first to analyze the structure,

inputs, and outputs of the two individual tools, perform a domain analysis (of this subset

of tools) and produce a feature model of that domain. We then used the feature model to

identify the characteristics of each individual software development tool that must be

accounted for within a higher -level ontology. Finally, we sought to build an ontology

capable of providing a common view of the domain, providing an effective representation

of relations (similarities and differences, interacting via compatible translation,

transformations) between representations of corresponding concepts in the different

software development tools. This was especially important since the corresponding

concepts of the two tools are not exactly the same, but contain subtle differences.

 3

B. STATEMENT OF THE RESEARCH QUESTION

The research question for this thesis is as follows:

• What is an appropriate methodology for develo ping a Software
Development Tool Ontology for establishing interoperability between
software development tools?

Note that this research question implies that the methodology used to arrive at the

ontology is as important as the ontology itself. While the ontology will determine

whether the interoperability ontology for the two software development tools (Rational

RequisitePro and Software Engineering Automation tools (SEATools)) is appropriate, the

methodology will also ensure that the ontology can be later extended with the inclusion

of additional tools.

Before building this ontology, our study will focus on investigating the essential

characteristics of these two software development tools, then building a feature model

representing the essential identif ied characteristics (extracted from the user manuals and

the use of the tool itself) for each tool. Finally, we distinguish the commonalities

between the two tools to build a high level ontology unifying the framework of

interoperability and translation of the two tools.

Ontology literature is full of examples of the development of ontologies in several

different domains. While software development tools is not one of these domains, the

experiences of these previous researchers (and the methodologies they used to develop

their ontologies) provide a starting place for the development of a methodology that we

can use to develop a software development tool ontology.

C. CONTRIBUTIONS

Developing software engineering design environments that maximize

interoperability, communication and efficiency tailored for particular domains is a

common objective for software engineering stakeholders who seek to improve the

outputs by automating engineering practice around a specific domain. The larger

software development community has embraced the concepts of Product Lines and

Generative Programming techniques. The advantage of developing specific ontologies

 4

tailored to the domain of the engineering enterprise provides benefits stemming from

representational efficiency. However, there has not been a lot of work in developing

ontologies tailored to the domain of software development itself. One reason for this is

the amount of effort required to produce such an ontology is substantial. Specific

ontologies such as this ongoing project are, in fact, not easily buildable, which obliges us

to undertake seemingly heavy processes to identify existing features in both software

engineering tools to satisfy the representational needs. An ideal solution will be offered

by the cons truction of a general ontology for common features management, which might

allow for resource sharing and artifact porting over and across multiple tools in the

software engineering domain, possibly with an easy and fast process of customization

without having to develop new systems from scratch [LENC01].

The software engineering contributions represented in this thesis are:

• An initial investigation and analysis of the structure, inputs, and outputs of
the two individual software development tools, and the identification of
essential characteristics of these tools.

• The completion of a domain analysis (of this subset of tools) and
production of a feature model for each tool’s characteristics.

• An identification of the commonalities between the two software to ols’
characteristics that must be accounted for in building a high level ontology
for the domain.

• The construction of an initial high-level ontology using a knowledge-
based design and knowledge system developed at Stanford University:
“Protégé 2000”.

• The establishment of a methodology around which future software
development tools can be analyzed and added to this initial software
development tool ontology.

Ontologies can serve many purposes associated with communication,

interoperability, and systems engin eering functions (reusability, specification, etc.)

[USCH96]. The ontology that was generated in this research was influenced by the

future goal and intended use of the ontology. In this case, the intended use was to

establish interoperability between tw o software development tools. These tools were not

chosen arbitrarily. The future purpose of the ontology biases the choice of the particular

set of features that are analyzed. The future purpose biases the organization of the

 5

domain of interest by highlighting commonalities and resemblances needed for the given

purpose. For instance, because we started by analyzing the requirement management tool

followed by the computer aided prototyping tool in order to come up with the essential

characteristics that make them interoperate, it is not surprising that the ontology tailored

to this goal appears to be more requirement management oriented than say, “software

testing” oriented. Conversely, the design of a general ontology (applicable to all software

engineering tools), while lacking the important guidance represented by application -

driven and tool-driven constraints, must regard the versatility of the template or

framework as one of the most important promising achievements [LENC01].

Our strategy for developing the ontology was based on both a top-down and

bottom-up approach. In order to be effective, we sought to make the top -down approach

tackle the core problem of the interoperability between the software development tools

[SOWA00]. The bottom-up approach, focused on developing specific tool ontologies

that accurately described the artifacts produced by the tools so that their data processes

could be actually made to interoperate. A software development tool ontology is a

system of features, selected because of their usefulness to capture interesting

commonalities and similarities between tools. The choice of a proper ontology for the

software development tools was a very important factor in accomplishing the task of

interoperability building and struc turing, far beyond the issue of the representation of the

inventory of the software development tools’ features.

D. INTRODUCTION TO ONTOLOGIES

The history of the word “ontology” first appeared in philosophy referring to the

subject of “existence”. The same word also shares some commonalities with the

“epistemology”, which is about knowledge and knowing. These latter commonalities are

particularly obvious in the context of knowledge sharing, where an ontology is a

description (similar to a formal specification of a program) of the concepts and

relationships that can exist for an entity or a group of entities [GRUB02]. Corazzon in

his article “descriptive and formal ontology” defines an Ontology as a theory of objects

and their relationships [CORA02]. The widespread use of ontologies provides a

 6

meaningful practice for distinguishing various types of objects (concrete and abstract,

existent and non-existent, real and ideal, independent and dependent) and their ties

(relations, dependences and predication).

Modern usage of ontology is influenced by a commingled theory developed from

both philosophers and scientists working in Artificial Intelligence, database theory and

natural language processing. [CORA02] introduces the possibility of distinguishing

ontology as “conceptual analysis” from ontology as “technology.” Descriptive and

Formal Ontologies present contemporary developments in ontology in both the

philosophical and the technological contexts. This latter kind of ontology will be the

basis of our approach, especially in trying to develop an ontology allowing

interoperability and communication between different software development tools.

Lenci defines ontologies as a core ingredient in knowledge management and

content-based systems [LENC01]. Ontologies’ tasks start from document search and

categorization to information extraction and text mining. Ontologies also represent an

important bridge between knowledge representation and computational lexical semantics.

Ontologies are widely used as formal devices to represent the lexical content of words,

and appear to have a crucial role in different language engineering (LE) tasks, such as

content-based tagging, word sense disambiguation, multilingual transfer, etc. [LENC01].

Lenci illustrates the example of a top-down ontology, aiming at a universal

coverage of human categories. For instance, Cyc [LENA90] forms a huge knowledge

base containing over 100,000 concept types in the domain of universal coverage of

human categories. The example demonstrates the potential advantage of general

ontologies in that they can represent a common language for systems dealing with

knowledge representation in different domains [LENC01].

Sowa [SOWA00], as quoted by [LENC01], defines an ontology as:

a catalogue of the type of things that are assumed to exist in a domain of
interest D, from the perspective of a person who uses a language L for the
purpose of talking about D.

 7

Furthermore, Lenci emphases the fact that an ontology must include only

instances that belong to the same domain of interest [LENC01]:

From a semantic point of view, an ontology determines the domain of
discourse for a language L, i.e. what L talks about. The ontology on which
L is interpreted actually constrains the expressiveness of L itself. For
instance, if the ontology only contains plants and animals, then it will be
impossible to speak about computers, unless they are categorized either as
plants or as animals, thereby losing the possibility to account for crucial
differences among them. To be able to do this, the ontology should be
refined by adding a further category, e.g. the one of artifactual objects.

It can be inferred from the previous quote that “Artifact” is an ambiguous term

that can be confusing because it masks a number of unstated assumptions. “Artifact” can

be used to mean a physical object, a primary record, or a physical object that constitutes a

primary record. From the point of view of a researcher, and for the purposes of

developing an interoperability ontology or any other kind of ontology, an artifact can be

defined as an information resource in which the information is recorded on a physical

medium belonging to a certain domain of interest (such as animals and plants), which

may or may not be unique, and in which the type adheres not only in the domain of

interest, but also in the object itself. In other words, artifacts are things that have intrinsic

value, independent of the informational content [LENC01].

Another view of ontologies [USCH96] defines “Ontology” as a term used to refer

to the shared understanding of some domain of interest. This domain of interest may be

used for the purpose of unifying certain frameworks to solve particular problems in the

same domain. Regardless of the domain of exploration, an ontology s hould necessarily

include some sort of world view conceived as a set of concepts (such as entities,

relations, and attributes from one side and their definitions and inter -relationships from

another side) with respect to a given domain. Moreover, because people, organizations,

and software systems need to communicate between and among themselves for more

efficiency, there are often difficulties/inaccuracies in communications generated from

differing contexts, understandings, viewpoints and assumptions. One way to solve this

troublesome behavior is by building ontologies that help by:

 8

• Improving poor communication,

• Establishing a unified environment for conceptual models and ideas,

• Preventing redundant work and cross purposes,

• Increasing productivity via the ease of understandability,

• Providing a widespread use of the domain of interest.

Ontologies are an efficient way to reduce or eliminate conceptual and semantic

confusion. They establish a shared understanding and unifying framework. These latter

have as a main objective the improvements of:

• Communication between people with different backgrounds, needs and
viewpoints arising from different contexts. Examples may include:

• Normative Models: that establishes the semantics of the system
and potential extensions,

• Networks of Relationships: which explore the relationships
between different entities,

• Consistency and Ambiguity: by providing unambiguous and clear
definitions,

• Integration of different User Perspectives: by establishing a
groundwork for development of standards within the community.

• Interoperability among systems achieved by translating between different
modeling methods, paradigms, languages, and software tools. Examples
may include:

• Integrating environments for tools,

• Inter-lingua Translators: assures a meaningful understanding of a
domain given in different languages,

• Internal Interoperability: integration of different systems,

• External Interoperability: assures an openness of organizations to
the outside world,

• Integrating Ontologies: integrates Domains and Tools.

• System engineering ontologies (such as reliability engineering, reuse
engineering) may improve:

• Specification: shared understanding assists in establishing the
specifications of systems,

• Reliability: can form the basis for manual checking. Formal
ontologies can be used to make assumptions explicit to users.

 9

• Reusability: allows modules to be imported and exported between
systems.

Gruber states that the basis of representing knowledge formally accounts in great

part on conceptualization (an abstract, simplified view of the domain of interest to be

represented): the objects, concepts, and other entities that are assumed to exist in a

domain of interest as well as the relationships that exist among them [GRUB02]. Every

knowledge base, whether it is a knowledge-based system or knowledge-level agent, is

committed to some explicit or implicit conceptualization. This approach is important in

our case of developing an ontology for software development tools, where we simplify

the view of software development tools represented as well as depict the eventual

relationships that exist among them.

The development of ontologies is not a new concept. Various work on ontologies

has emerged in different domains of interest. We have introduced about fiv e different

views of what ontologies are depending on the domain of interest. However, their

common denominator is mainly characterized by defining the vocabulary with which

queries and assertions are exchanged among entities. These describe ontological

commitments (Ontological commitments are agreements to use the shared vocabulary in

a coherent and consistent manner) that enable different entities operating on different

theories to communicate about a domain of interest. All of this provides a foundation for

our work. Our objective was to develop an ontology characterized by a certain kind of

formalism, allowing interoperability between different tools within the same domain of

interest, and capable of increasing the degree to which different software development

tools communicate with each other.

The entities sharing a vocabulary do not necessarily have the same knowledge

base; we may consider an entity that knows things and other entity that does not. An

entity that commits to an ontology is not required to answer all queries that can be

formulated in the shared vocabulary. In short, a commitment to a common ontology is a

guarantee of consistency, but not completeness, with respect to queries and assertions

using the vocabulary defined in the ontology

 10

E. SUMMARY

The objective for building this ontology is to offer a powerful and versatile tool

for the representation of the commonalities between essential features of two software

engineering tools (Rationale RequisitePro and the Software Engineering Automation

Tools (SEATools)). This represents several challenges for the ontology design, since it

requires tackling the difficult issue of providing an explicit and adequate technical

behavior of each feature, a crucial condition for them to be properly usable as the main

backbone in the interoperability between different tools [LENC01].

Fortunately, we ended up by overcoming these challenges and developed an

ontology that can be used for interoperabity between two software development tools and

serving as a pilot that can be extended to include more software development tools. More

importantly, we developed a methodology, which can be used to add and analyze

additional tools to this ontology framework.

 11

II. FOUNDATION AND RELATED WORK

A. INTRODUCTION

Several other researchers’ works form the foundation to this research and others

are related or (competing) work. The foundation work is full of examples dealing with

interoperability and communication of heterogeneous systems. While software

development tools is not one of these domains, the experiences of these previous

researchers provide a starting place for the development of a methodology that we can

use to develop a software development tool ontology.

B. FOUNDATION WORK

There are several works that deal in some way with the interoperability and

communication of heterogeneous systems that provide a motivation and foundation for

our research. These works preceded ours and constitute the basis for our software

development tools’ ontology. Among these works we select the following according to

the degree to which they together with ours compliment each other and contribute to the

enrichment of software engineering.

1. Software Tool Interoperability [PUET02, 03]
a. Summary

Puett proposed an initial inves tigation into the development of a Holistic

Framework for Software Engineering (HFSE) [PUET02, 03]. This Holistic Framework

establishes mechanisms by which existing software development tools and models

interoperate. He presents the holistic framework as an efficient way to provide seamless

interoperability between software tools and models with improvement to both process

and product. The HFSE captures and uses dependency relationships among

heterogeneous software development artifacts, the results of w hich are used by software

engineers to improve software processes and product integrity. This kind of framework

triggers the research for discovering dependencies among different aspects of the

software engineering process. In the meantime, an implementa tion of processes

enhancing the software integrity is likely to be achieved. This latter is one of the many

 12

improvements expected from establishing an HFSE. A second advantage would be to

automate the software development process as long as models or too ls, inputs and outputs

can be supplied through the holistic model. Different tools will be able to interact

automatically, with less involvement of the software engineer. Because all artifacts

within the holistic model are tracked together as a large dependency graph, it is possible

to extract select “slices” of the dependency graph for particular purposes, allowing more

“focused” development. For example, since the holistic model interacts with existing

process models such as software risk, reuse, and testing; it will then be poss ible to extract

a “slice” of the entire dependency graph (a slice that represents the greatest risk) so that

prototyping and analysis effort is not wasted on developing art ifacts that are already well

defined, understood, and/or successfully implemented in previous versions.

b. Concepts Useful to the Thesis

One of the mechanisms that is required by the HFSE is the development of

an ontology via which existing software development tools will interoperate.

Characterizing different software development tools, and capturing the different

commonalities between them to be later assembled in a kind of dictionary will be the

crucial part of this approach. This contribution will improve the communication between

the different parts of the software development process and the software development

tools themselves. The ontology for software development tools constitutes the first step

allowing the HFSE to capture and use dependency relationships among heterogeneous

software development artifacts. This ontology will be used as unifying framework for

improving communication and translating between the software development tools. The

ontology will form the basis for the establishment of Component and Federation

representations of the artifacts and activities of software development processes.

2. Software Evolution [HARN99c]
a. Summary

Harn, in his PhD dissertation [HARN99c], describes software evolution in

terms of a Relational Hypergraph model (RH model). His work extends the work of

several others [LUQI90] [BADR93] [IBRA96] who established the use of directed

graphs and hypergraphs for managing the complexities of software evolution. Harn's

model establishes dependencies and links between key activities and artifacts of a

 13

particular software development model and also between sequential iterations of cycles

within that model. Furthermore, the model plays a significant role in allowing the

management of both the activities in a software development project and the artifacts

produced by these activities using automated tools devoted to this purpose. As an

illustration of such a tool, the Computer Aided Software Evolution System (CASES) was

developed at the Naval Postgraduate School in support of Harn's work .

CASES is a software tool that performs the following functions during

software evolution: control, management, formation, refinement, traceability, and

assignment. It manages and controls all the activities that affect a software system and

the relationships among these activities by changing them. CASES is based on the

relationships of the Software Evolution Process Model as shown in detail in Figure 1.

Figure 1. Software Evolution Processes with CASES [HARN99c].

In the relational hypergraph, software evolution objects are activities and

artifacts affected by the software evolution process. They consist of “Steps” and

“Components.” The relational hypergraph links these objects and establish dependencies

between the objects via the use of a hierarchical refinement. Harn's work forms the basis

 14

for establishing a Software Evolution Model which forms as the core for the Holistic

Framework for Software Engineering.

b. Concepts Useful to the Thesis

By adding extensions, the Relational Hypergraph becomes a very useful

mathematical construct for establishing dependencies between evolution artifacts and

forms a foundation for establishing interoperability and dependency tracking between

such artifacts. However, before such constructs can be developed, the artifacts and

activities (and their associated properties) must be identified and defined. An appropriate

means of capturing these artifacts and activities is through the use of an ontology.

Constructs within CASES can then be developed that allow the software designer to

“build” the objects, components, steps, and attributes that the designer uses. The

development of an ontology that unifies all the terms and improves the communicational

environment of software development must also be extensible to account for unforeseen

constructs.

3. Object-Oriented Model for Interoperability (OOMI)[YOUN02]

a. Summary

Young's Object-Oriented Model for Interoperability [YOUN02] relies on

Object-Oriented Analysis and Design (OOAD) to establish a federation of objects for

interoperability between heter ogeneous systems. Young points out that consistent

representation of the same real world entity in various legacy software products is a

continual problem for system interoperability. To address this problem, he presents an

Object-Oriented Model for Interoperability (OOMI). This model is used to solve the data

and operation consistency problems in legacy systems. The model calls for the

establishment of a Federation Interoperability Object Model (FIOM) that is specified for

a specific group of systems (termed a “federation”) designated for interoperation. Young

states [YOUNG01]:

The FIOM consists of a number of Federation Entities (FEs) that contain
the data and operations to be shared between systems. The FIOM also
captures the translations required to resolve differences in representation
of this data and operations.

 15

An example UML representation of an FIOM is shown in Figure 2 below:

FederationEntityA

+FederationEntityA_View1
+FederationEntityA_View2
 ...
+FederationEntityA_ViewJ

FederationEntityD

+FederationEntityD_View1
+FederationEntityD _View2
 ...
+FederationEntityD _ViewM

FederationEntityB

+FederationEntityB_View1
+FederationEntityB _View2
 ...
+FederationEntityB _ViewK

FederationEntityC

+FederationEntityC_View1
+FederationEntityC _View2
 ...
+FederationEntityC _ViewL

FederationEntityE

+FederationEntityE_View1
+FederationEntityE _View2
 ...
+FederationEntityE _ViewN

1 *

FederationEntityZ

+FederationEntity Z_View1
+FederationEntityZ_View2
 ...
+FederationEntityZ_ViewX

.

.

.

Figure 2. Federation Interoperability Object Model [YOUN02].

At runtime, the OOMI uses a middleware-based translator to process the

information contained in the FIOM. The translator automatically converts instances of

real-world entity attributes and operations to the proper representation to enable

interoperation between systems (see Figure 3 below):

 16

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator

Destination
Model

Translator

Middleware

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure 3. Middleware Translator Implementation [YOUN02].

In addition to defining the constructs of the OOMI, Young provides a

specialized toolset used to create the FIOM prior to run -time. This tool set is called the

Object Oriented Model for Interoperability Integrated Development Environment (OOMI

IDE) and is used to:

• Discover the information and operations shared between federation
components,

• Provide assistance in identifying the different representations used for
such information and operations by component systems,

• Define the transformations required to translate between different
representations, and

• Generate system-specific information used to resolve representational
differences between component systems.
b. Concepts Useful to the Thesis

Young's OOMI provides a mechanism for establishing the interoperability

of various software development tools and models. The only requirement for these tools

and models is that they be definable within an object paradigm [PUET02]:

 17

• Young identifies two concepts that will be directly applicable to mapping
multiple software engineering tools to each other within the HFSE:
heterogeneity of scope and heterogeneity of representation. Heterogeneity
of scope refers to the fact that differing amounts and types of information
can be specified by dif ferent systems to represent the state and behavior of
the same entity. Heterogeneity of representation refers to the fact that
different systems, when referring to the same entity, often have differences
in: terminology used, format, accuracy, range of values allowed, and
structural representation of the included state and behavioral information.

• Several of the challenges facing the HFSE will be how to resolve different
levels of abstraction for information provided in different tools and
models. The Federation Entity View (FEV) in Young's OOMI may
provide the ability to resolve these differences [Young02]:

The FEV contains the translations required to convert between each
component system representation and the 'standard' representation of that
view. These translations are used to resolve differences in physical
representation, accuracy tolerances, range of values allowed, and
terminology used in representing a federation entity view. These
translations are defined by the interoperability engineer and stored in the
FEV for subsequent use.

A start towards tackling these challenges is via the use of an ontology

capable of capturing the commonalities between different software development tools.

This ontology will be used as a unifying framework for improv ing communication and

translating between software development tools. The ontology will form the basis for the

establishment of Component and Federation Representations of the artifacts and activities

of software development processes.

4. Ontologies: Principles, Methods and Applications [USCH96]

a. Summary

Uschold and Grainger define “Ontology” as a term used to refer to the

shared understanding of some domain of interest [USCH96]. This domain of interest

may be used to solve particular problems in that domain. An ontology should necessarily

include some sort of world view conceived as a set of concepts. One powerful way to

solve the troublesome behavior of communication difficulties/inaccuracies is by building

ontologies that would:

• Establish a unified environment for conceptual models and ideas,

• Prevent redundant work and cross purposes,

 18

• Provide a widespread use of the domain of interest.

Ontologies are an efficient way to reduce or eliminate conceptual and

terminology confusion. They establish a shared understanding and unifying framework.

They improve:

• Communication between people with different backgrounds, needs and
viewpoints arising from different contexts,

• Interoperability among systems achieved by translating between different
modeling methods, paradigms, languages, and software tools.

As an example of an ontology, the Enterprise Ontology [USCH98] was

developed within the Enterprise Project, a collaborative effort (by the Artificial

Intelligence Applications Institute at the University of Ed inburgh with its partners: IBM,

Lloyd's Register, Logica UK Limited, and Unilever) to provide a framework for

enterprise business modeling. The ontology was built to serve as a basis for this

framework, which includes methods and a computer tool set for enterprise modeling.

This ontology is presented as a collection of terms and definitions relevant to business

enterprises. The authors present natural language definitions for all the terms, starting

with the foundational concepts used to define the main body of terms such as entity,

relationship, and actor. As an example of an ontology, Table 1 is a complete list of the

terms defined in the Enterprise Ontology. The table shows a collection of terms and

definitions relevant to business enterprises. This collection is presented in natural

language and classifies the terms by categories, starting from activities and process all the

way through time.

 19

Major Category Ontology Terms

Activity Activity Specification, Execute, Executed Activity

Specification, T-Begin, T-End, Pre-Conditions, Effect, Doer,

Sub-Activity, Authority, Activity Owner, Event, Plan, Sub-

Plan, Planning, Process Specification, Capability, Skill,

Resource, Resource Allocation, Resource Substitute.

Organization Person, Machine, Corporation, Partnership, Partner, Legal

Entity, Organizational Unit, Manage, Delegate, Management

Link, Legal Ownership, Non-Legal Ownership, Ownership,

Owner, Asset, Stakeholder, Employment Contract, Share,

Share Holder.

Strategy Purpose, Hold Purpose, Intended Purpose, Strategic Purpose,

Objective, vision, Mission, Goal, Help Achieve, Strategy,

Strategic Planning, Strategic Action, Decision, Assumption,

Critical Assumption, Non-Critical Assumption, Influence

Factor, Critical Influence Factor, Non-Critical Influence

Factor, Critical Success Factor, Risk.

Marketing Sale, Potential Sale, For Sale, Sale Offer, Vendor, Actual

Customer, Potential Customer, Customer, Reseller, Product,

Asking Price, Sale Price, Market, Segmentation Variable,

Market Segment, Market Research, Brand Image, Feature,

Need, Market Need, Promotion, Competitor.

Time Time Line, Time Interval, Time Point.

Table 1. List of the Terms Defined in the Enterprise Ontology [ENTR02].

The idea of the Enterprise Ontology was extended by The Enterprise Tool

Set (consisting of various components each serving one or more main purposes) designed

to facilitate the integration of multiple independently developed software tools in a single

package (Figure 4). To an end user running an application, there is no visible distinction

 20

between a function being achieved by a module in the Tool Set itself or by an outside

tool.

Task
Manager

Agent
Registrations

Ontology

Procedure
Models

Agent
Registration Tool

Procedure
Builder

Tool Set
Administration

Method Expert

Tool
1

Agent 1

Tool
2

Agent 2

Tool
n

Agent n

...

User

Figure 4. Tool Set Architecture [USCH98].

Figure 4 illustrates the flexible agent-based architecture of the enterprise

tool set us ed to achieve tool integration.

b. Concepts Useful to the Thesis

[USCH96] is useful because it defines what an ontology is, the usage of

domain of interest and the possibility of using it for the purpose of unifying certain

frameworks to solve particular problems in the same domain. The authors discuss the

uses of ontologies, and present an initial methodology to build an ontology - a

methodology that we adopted and modified to suit our purposes. This article served as

guidance in including the concepts collected or identified from the analysis of some

software development tools in our ontology. This necessity was fulfilled by including

concepts such as: entities, relations, and attributes and their definitions and inter -

relationships. Furthermore, the use of the Enterprise Ontology is an example for the

representation of the software development tool ontology. The conceptual analysis for

this ontology is applicable for reuse with software development tools, avoiding the need

to start from scratch and build yet another special purpose process-modeling language.

This results in:

 21

• Savings due to reuse,

• Savings in initial coding time,

• More responsive to change due to the increased modularity of the Tool Set
software.

Note that these three savings will be barely felt in the case of our software

development tools ontology (the first pilot work), but would be achievable in case of

extending it, building other ontologies, or reusing this one.

5. UML as an Ontology Description Language [CRAN01]

a. Summary

Cranefield, et. al. presents the Unified Modeling Language as a possible

language for defining and describing domain ontologies [CRAN01]. They also view

ontologies as having an important role in defining the terminology that agents use in the

exchange of know ledge-level messages. As object-oriented modeling, and the Unified

Modeling Language (UML) in particular, have built up a huge following in the field of

software engineering and are widely supported by robust commercial tools, the use of

UML for ontology representation in agent systems would help to hasten the uptake of

agent-based systems concepts into industry. The use of UML is almost generalized in

industry, therefore it provides an effective and scalable approach to conceptual modeling,

and thus it should be seriously considered as an ontology modeling language. The paper

also examines the potential for UML to be used for ontology modeling, compares it to

traditional description logic formalisms and discusses some further possibilities for

applying UML-based technologies to agent communication systems. The authors added

that according to their point of view, UML could be regarded as a suitable candidate for

knowledge representation.

b. Concepts Useful to the Thesis

Since our ontology is mainly develo ped to catch the commonalities

between the different artifacts associated with different software development tools,

serving as a dictionary allowing communication and interoperability between these tools,

we choose the usage of a widespread adopted language: the Unified Modeling Language

(UML). The use of UML for our ontology representation helps to show the inter -

relationships between classes using relationships between classes and inheritance.

 22

Moreover, the second reason behind our choice of using UML in depicting the inter-

relationships between the different artifacts present in our software development tool

ontology, resulted from the use of the Protégé software ontology capture tool. Protégé

also uses relationships and inheritances in showing inter -relationships between classes of

the software development tools parts of the ontology. Thus, it is convenient for us to

show the relationship between classes of different ontologies using UML. Previously, we

presented Object-Oriented Model for Interoperability (OOMI) [YOUN02]. OOMI

methodology uses a UML type structure to express the inter -relationships between

objects in different ontologies – we want to mirror that implementation. Our work

together with Object-Oriented Model for Interoperability (OOMI) are related to each

other and complement each other; this fact was also taken into account when choosing to

use UML.

6. Overview of Protégé [PROT02]
a. Summary

Protégé-2000 is a knowledge-based design and knowledge-acquisition

system developed over more than a decade at Stanford University as a software

engineering methodology [MUSE95a]. It is available free under the open-source Mozilla

Public License and is compatible with a wide range of knowledge representation

languages [PROT02]. The tool allows th e designer to create custom knowledge-based

tools for whatever application is needed. Protégé assists software developers in creating

and maintaining explicit domain models, and in incorporating those models directly into

program code. Protégé allows sys tem builders to construct software systems from

modular components, including:

• Reusable frameworks for assembling domain models,

• Reusable domain-independent problem-methods that implement
procedural strategies for solving tasks [ERIK95]. Protégé allows r euse of
frameworks for building domain models through its support for
declarative domain ontologies.

The core concept behind the architectural makeup of Protégé-2000 is the

design of an ontology or the set of concepts and their relations. This allows for

granularity in a domain-specific area, which allows domain experts to use the tool to

 23

establish a knowledge base. Using a problem-solving methods specific to that domain,

domain experts can then search this knowledge base.

The Protégé-2000 knowledge model has four main concepts that are

represented in the software by frames:

• Classes,

• Instances,

• Slots,

• Facets.

The tool uses “classes” and “instances” distinctly and employs a third type

of modeling abstraction called “slots”. Classes represent the definit ions of concepts,

instances represent the specific examples of a concept, slots represent attributes of either

a class or an instance. Finally there are facets, which are defined as properties of slots,

and are constraints on, slot values [PROT02].

Figure 5. Protégé Screen Shot of a Slot Interface with its Different Characteristics.

 24

Figure 5 was taken from the RequisitePro Ontology as an illustration

showing the different slots, cardinalities, instances, and queries allowed by the Protégé

Tool.

Figure 6. Classes and Related Slots.

Figure 6 shows the different artifacts (classes, slots, facets…) of the

Protégé tool as well as the interface allowing the manipulation of the information used in

building the ontology. The classes are in the left side of the screen shot an d slots on the

right.

The Protégé approach is quite different from that taken in traditional

object-oriented programming, where both the domain knowledge (slots of objects and the

values associated with particular slots) and the problem solvers (methods associated with

specific objects) are bundled together. In traditional object-oriented programming,

program execution is controlled by sending messages from one object to another, where

each object encapsulates both data and the methods that operate on th ose data [BOOC94].

In the Protégé approach, however, the problem-solving methods are first-class entities

that have formal parameters that must be mapped to the appropriate referents in the

 25

domain knowledge. The separation of problem-solving methods from the domain

knowledge on which those methods operate is essential for component reuse. The

language for expressing ontologies in Protégé is a frame-based representation system in

which classes have slots of defined cardinality and data type. Slots may ha ve data that

represent instances of other classes in the ontology (e.g., when a class called

“prescription” has a slot called “drug-prescribed” that takes on as values instances of

another class “drug”). When the data type of a slot is an instance, the on tology-definition

language allows the developer to set explicit constraints on the classes whose instances

are allowed as values for that slot. When the data type of a slot is a string, the language

allows the user optionally to specify a grammar that res tricts the kinds of strings that may

be used as values for that slot [MUSE98].

Facets are defined as properties of slots. Multi-inheritance is allowed

between classes and every instance of a class is an instance of the superclass of that class.

Classes can also be instances of other classes. The Protégé-2000 environment is divided

into tabs. Each tab is divided into panes. The plug-in architecture of Protégé-2000

makes possible a number of specialized visual tools for entering guideline knowledge

[OVER02]. The tool itself is GUI-based so all the design is done using forms and tabs.

The interface is easy-to-use due to the placement of widgets and tabs that give the

designer easy access to the tools. The tool also employs a visualization tool that allo ws

the designer to see and editor the ontology structure.

As a conclusion, Protégé-2000 gives the user the ability to construct a

domain ontology by using a robust knowledge model. The model uses domain -expert

knowledge to design a tool that can be acces sed by other applications to tap into its

knowledge base.

b. Concepts Useful to the Thesis

Protégé was originally used by Stanford to develop ontologies, and it will

be the main software tool that we will use to capture and define the ontology related to

software development tools in general and for identifying the specific ontologies related

to specific tools (SEATools and RequisitePro).

 26

C. RELATED WORK

There is not much literature related to the development of ontologies for the

domain of software development tools. There does seem to be a lot of literature related

to the use of ontologies for capturing the terminology of a different domain for software

engineering purposes – i.e. to build software to support a particular domain. In fact, the

Enterprise Ontology already presented in the beginning of this chapter is such an

example. Another example illustrating an approach based on the use of Protégé software

(engineering in describing the implementation of the Education and Outreach Network

(EON) architecture) is presented below.

1. Domain Ontologies in Software Engineering [MUSE98]

a. Summary

The article “Domain ontologies in software engineering: use of Protégé

with the EON Architecture” [MUSE98] illustrates an approach based on the use of

Protégé software. The article describes the implementation of the Education and

Outreach Network (EON) architecture by building middleware components (reusable,

embeddable software modules) such as a temporal database mediator for handling

requests of time-dependent data from a patient database, domain models for multiple

clinical specialties. It is a generic and extensible ontology for modeling clinical

guidelines and protocols, provides an eligibility-determination server, a protocol-based

therapy planner; and a mediator for explaining and visualizing the behavior of other EON

components. The Medical Informatics Section at the University School of Medicine,

Stanford, California, U.S.A developed this ontology.

EON seeks to create an architecture made up of a set of software

components and a set of interfaces that developers can use to build robust decision -

support systems that reason about guideline-directed care. Moreover, according to the

author, the capability of ontologies to encode clinical distinctions not us ually captured by

controlled medical terminologies provides significant advantages for developers and

maintainers of clinical software applications. The use of explicit domain ontologies and

reusable middleware components should provide significant advant ages to developers

who wish to embed decision-support software within more general clinical information

 27

systems. In the EON project, a guideline modeler uses the Protégé-2000 knowledge-

editing environment to create and maintain models of concepts and rela tions in the

medical specialty and of clinical guidelines and protocols.

The Protégé software-engineering methodology provides a clear division

between domain ontologies (formal descriptions of the classes of concepts and the

relationships among those concepts that describe an application area) and domain -

independent problem-solvers that, when mapped to domain ontologies, can solve

application tasks. The Protégé approach allows domain ontologies to inform the total

software-engineering process, and for on tologies to be shared among a variety of

problem-solving components. By generating Java classes from Protégé-2000 classes and

creating Java methods that can be invoked, the Stanford Informatics Section were able to

add behavior to the frame-based knowledge base that Protégé-2000 provides. By using

the CORBA technology, they were able to distribute EON components as clients and

servers that are available from anywhere via the Internet.

b. Concepts Related to the Thesis

This approach is similar to the approach of the HFSE. The main

difference between EON and HFSE is in the domain of the application – EON deals with

unifying the domain of health care (patients and clinics) while the HFSE is devoted to the

interoperability of software development tools; howev er, the use of ontologies for

capturing and using the structure and context of the particular domain to support

automated tools for the domain are similar.

2. DARPA Agent Markup Language [DAML02]
a. Summary

The DARPA Agent Markup Language (DAML) is a new technology that

is supporting the development of the “Semantic Web” (an improved World Wide Web

where agents can understand the meaning of hyperlinked entities). One of the things this

DARPA program is doing is to link together many ontologies of differ ent domains. They

have an ontology library with over 190 ontologies.

 28

b. Concepts Related to the Thesis

Among these ontologies there are two ontologies dealing with “Software”

[SOFT02]. Software tools which is rather small (4 classes and 11 properties) and

“Software Engineering” [SOEN02] is a bit bigger (66 classes and 120 properties).

However, neither of these ontologies really addresses our domain of interest (software

development tool artifacts). The first ontology is only used for collecting summa ry

information about different software development tools that someone might use, and the

second ontology deals with annotating one specific UML based software development

tool. These two facts represent further evidence that while there is some work in t he area,

there is no specific work on software development tool ontologies.

D. CONCLUSION

Throughout this chapter, we presented the different works that served as a

foundation for ours as well as the related (competing) work. Together, these works form

the basis for developing our ontology and forging our methodology. This methodology

forms the main basis and focus of this research, as well as the main contribution of this

thesis.

 29

III. METHODOLOGY

A. INTRODUCTION

In the previous chapter we walked through the foundation for our work and some

related work that dealt in some way with the interoperability and communication of

heterogeneous systems existing in the same domain of interest. These works preceded

ours and constitute a foundation for our software development tools’ ontology. In this

chapter, we will present the methodology followed to achieve our goal.

B. RESEARCH METHOD

Because there is currently no ontology for the domain of software development

tools, we were unable to rely on previous work and instead had to develop our own

ontology. We were, however, able to leverage an existing methodology for establishing

our ontology [USCH96] and tailor that methodology to our purpose. The ontology

development process starts with identifying the purpose and scope of the ontology (step

1). The second step (step 2) is the development of feature analysis for the selected

domain (in this case, the domain of software development tools). This is followed by

(step 3) reasoning and brainstorming about observat ions and information generated by

the feature models to select the commonalities between the two tools and build a high

level ontology representing these commonalities. The next step (step 4) is to build more

detailed ontologies for each tool. These ontologies include more essential characteristics

at a finer level of granularity. Next (step 5), we used UML to represent the relationships

between the three ontologies. Finally, we documented the ontology (step 6).

1. Step 1 -- Purpose of the Ontology

The main purpose for developing an ontology for software development tools is to

overcome some of the obstacles (such as the limitation of interoperability between the

tools, lack of communication between the different software development tools, and poor

shared understanding between tools) by establishing a unifying contextual framework for

different software engineering tools. With an “ontology,” the different concepts and

ideas in the domain will be unified. The ontology actually will determine the set of

 30

semantic categories, which properly reflect the particular conceptual organization of the

domain of information, on which the system must operate, thus optimizing the results of

the shared information.

2. Step 2 -- Feature Modeling

To perform a domain analysis of the subset of tools, we proceeded by producing a

feature model for each tool of the domain of interest.

a. Overview of Feature Modeling

Features are used to define software product lines and system families, to

identify and manage commonalities and variabilities between products and systems.

Attempting to define a feature model for existing software tools allows us to explore,

identify, and define the key aspects of existing software so that these aspects can be

described in an ontology. It is this ontology that then allows us to improve

interoperability between existing tools.

Our approach for the analysis and the investigation of the structure of

inputs, outputs, and relationships of a collection of individual software engineering tools

can be characterized as a domain analysis (of this subset of tools) and the production of

feature model of that domain. This technique is well suited for the tools’ features as well

as the identification of their essential characteristics. Use of these characte ristics in

further steps of the research allows them to interoperate.

Domain engineering focuses on engineering solutions for classes of

software systems; it introduces and implements several different kinds of models, such as

feature models. The feature model is an abstract representation of functionality found in

the domain. It is used during domain engineering in order to obtain an abstract view on

this functionality, which can be verified against the needs raised by the domain.

Therefore, each feature is a relevant characteristic of the domain.

The description of feature models was tied to the introduction of the

Feature-Oriented Domain Analysis (FODA*) [KANG90] approach in the late eighties

* Feature-oriented domain analysis (FODA) is a domain analysis method developed at the Software

Engineering Institute (SEI). The method is known for the introduction of feature models and feature
modeling.

 31

[GEYE00]. A feature model represents an explicit model of a device or system by

summarizing the features and the variation points of the device/system. Feature models

include the rationale (a feature should have a note explaining why the feature is included

in the model) and the stakeholders for each of feature. A feature model for software

system captures the reusability and configurability aspects of reusable software. Feature

models allow us to capture the taxonomic level (the underlying organization of features

in a feature diagram). They also provide a road map to variability in other models (e.g.

object models, use case models, interaction and state transition diagram). Griss et al.

describes the important relationship between use case models and feature models as

follows [CZAR00]:

a use case model captures the system requirements from the user
perspective (operational requirements), whereas the feature model
organizes requirements from the user perspective based on commonality
and availability analysis.

As an example, Figure 7 illustrates a feature model of a lighthouse system:

Light Source

Lighthouse
System

Light Sensor Control

Batteries Omnidirectional Directional

Eclipsor

Solar Energy

Automatic Manual

Figure 7. Feature Model of a Lighthouse System.

 32

The feature model is defined around concepts and not around classes of

objects. We want to model features of elements and structures of a domain, not just

objects in that domain. We can use feature modeling together with various other

modeling techniques such as use case modeling, and class modeling.

Czarnecki and Eisenecker [CZAR00] slightly modified and extended what

was introduced in FODA (features are typically arranged in a hierarchical structure that

spans a tree) by adding some additional information, such as a short semantic description

of each feature, stakeholders interested in each feature, constraints, availability sites (i.e.,

where, when, and to whom a feature is available), binding sites (i.e., where, when, and

who is able to bind a feature), other attributes such as open/closed attributes (whether

new subfeatures are expected) plus priorities (how important a feature is).

Figure 7 illustrates of the structure of a general feature model in the

notation introduced by the FODA approach.

The root node (concept) of a feature tree always represents the domain

whose features are modeled. The remaining nodes represent features, which are

classified into three types:

• Mandatory features are always part of the system if their parent feature is
part of the system [GEYE00]. The mandatory feature is indicated by a
solid circle on the edge leading to the feature (e.g., the light source in
Figure 7).

• Optional features may be part of the system if their parent feature is
already in the system [GEYE00]. The decision whether an optional
feature is part of the system or not can be made independently from the
selection of other features. The optional feature is indicated by an empty
circle at the edge leading to the feature (e.g., the light sensor in Figure 7).

• Alternative features are connected via an exclusive or relationship, i.e.
exactly one feature out of a set is part of the system if the parent feature is
part of the system [GEYE00]. A typical alternative feature set is indicated
by an arc connecting the edges leading to the alternative features (e.g., the
two features automatic and manual in Figure 7).

• Additionally, features in a domain are of two categories: comm on and
variable [GEYE00]. Common features are always part of a system in the
regarded domain (a feature present in all instances of a concept). Variable

 33

features are only part of some systems. The classification of a feature is
determined by its type, and by its position in the feature tree. Common
features are always mandatory. Another prerequisite is that there are only
mandatory features in the path from the root node to the common feature.
Optional and alternative features are always variable (e.g., in Figure 7, the
battery feature is common feature, and the eclipser feature is not).
b. Feature Modeling

To perform feature modeling, we have to know the sources of features,

identify features, and finish by following some general steps in feature mode ling

[CZAR00]. Sources of features include the following.

• Existing and potential stakeholders,

• Domain experts and domain literature,

• Existing systems,

• Pre-existing models (e.g., use-case models, object models…).

• Models created during development (i.e., features gotten during design
and implementation).

Strategies for identifying features [CZAR00]:

• Look for important domain terminology that implies variability, during
feature modeling, we document not only functional features but also
implementation features.

• Examine domain concepts for different sources of variability: what
different sets of requirements do these variability sources postulate for
different domain concepts?

• Use feature starter sets to start the analysis; a feature starter set is a set of
perspectives for modeling concepts.

• Look for features at any point in the development. Update and maintain
feature models during the entire development cycle.

• Identify more features than you initially intend to implement in order to
create some room to grow.

General steps in feature modeling:

• Record similarities between instances (i.e. common features).

• Record differences between instances (i.e. variable features).

• Organize features in feature diagram, into hierarchies with classification
(mandatory, optional, alternative, and/or optional alternative features).

• Analyze feature combinations and interactions.

 34

• Record all the additional information regarding features.

All the previous steps are referred to as the “micro -cycle” of feature

modeling because they are usually executed in small, quick cycles.

The feature tree is the basic description of a feature model. It defines a

hierarchical structure over the set of features of a domain, thereby defining the parent -

child relationship between different features. But typically there are more relationships

between features. One relationship is called “Or-Features” [CZAR00]. This relationship

connects a set of optional features with a common parent feature. The meaning of the

relationship is that whenever the parent feature is part of a system, at least one of the

optional features in the set has to be part of the system. Czarnecki and Eisenecker

[CZAR00] extended the FODA notation so that this relationship can be expressed in the

feature tree.

Other types of relationships which cannot be expressed with the feature

tree notation are the “required” and the “excluded” relationships [CZAR00]. The

required relationship connects two variable features such that if one of the features is

chosen to be part of the system, the other feature has to be chosen, too. The excluded

relationship states that only one out of a set of features can be part of the system (e.g. in

Figure 7, if the automatic control feature is chosen, then the light sensor and the eclipser

feature have to be chosen).

Some relationships such as “default features” or “feature combination

recommendations” cannot be expressed in the tree notation. Typically they have to be

defined in an external representation. One solution to extend the use of this approach

(feature modeling) would be to extend UML with feature diagram notation. This would

prove a popular solution given the high level of acceptance of the UML in the software

industry.

c. Feature Tree of Selected Software Engineering Tools
(RequisitePro and SEATools)

In order to exploit the approach of feature modeling in a constructive way

for our application and show the eventual interoperability of some software engineering

tools, we built feature diagrams for the following tools: RequisitePro requirements

 35

management tool and the Software Engineering Automation Tools (SEATools). The

choice of these tools was tailored by the fact that this subset includes both a commercial

and research tool and represents substantial elements of the software development

process itself.

3. Step 3 – Establishing Commonalities

After producing a feature modeling for each tool (RequisitePro and the

SEATools) of our domain of interest, we established the commonalities existing between

the two feature models as for their feature trees, and the common artifacts existing in the

two tools. The establishment of these commonalities was the result of reasoning and

brainstorming about the information generated by the feature models to select the

commonalities between the two tools. The lists of features were generated and combined

in a high-level parent-child relationship. Moreover, the lists contain not only the

common features of the two tools in question, but also the common features of many

other software development tools as well.

4. Step 4 – Tool Ontologies

Since we choose how to represent the essential characteristics for each tool in an

ontology, we are making design decisions. In this case our ontologies are initially

informally described. To guide and evaluate our designs, we need objective criteria that

are founded on the purpose of the resulting artifact. We did our best to make our

ontologies follow some criteria that we judged necessary for knowledge sharing

[GRUB95]. In terms of clarity, our ontologies should effectively communicate the

intended purpose for which they were built. Definitions are given as objectively as

possible. When a definition can be stated in logical axioms, we did that. All definitions

are documented with natural language.

• Coherence: the software development tools ontologies, if necessary,
sanction inferences that are consistent with the definitions.

• Extendibility: the potential objective of our work is to build an ontology
that anticipates the uses of the shared vocabulary. The hope is that our
ontology will serve a framework or foundation for further extensibility. In
other words, one should be able to define new terms for special uses based
on the existing vocabulary, or include other software development tools in
a way that does not require the revision of the existing definitions.

 36

• Minimal encoding bias: avoid making biased choices. Choices were not
made purely for the convenience of notation or implementation.

• Minimal ontological commitment: the software development tools are
developed in a way that the emphasis was on minimal ontological
commitment to support the intended knowledge sharing activity.

5. Step 5 - UML Representation of the Domain

Since our ontology is mainly developed to catch the commonalities between the

different artifacts associated with two different software development tools, serving as a

dictionary allowing communication and interoperability between these tools, we choose

the usage of the Unified Modeling Language (UML). The use of UML for our ontology

representation would help to show the inter-relationships between classes and

inheritance.

6. Step 6 -- Documentation

Documentation involves the recording, maintaining, and reporting of each step

undertaken in each phase of the process established to develop the softwar e development

tool ontology. It includes all plans, meeting schedules, reports for the work done and

decisions taken. However, special attention was put on the specific documentation such

as the features lists (from the rough features lists to the ontolo gy filtered list), the feature

diagrams representing all the features selected, the Protégé databases including the three

ontologies developed for the purpose of the research, the UML diagrams showing the

class diagrams for each ontology and the relationship that exist between the UML

diagrams for each tool used in this research and the high level UML diagram representing

the high level ontology. The ontology documentation was updated as something changed

with time and as decisions were made during reviews .

C. CONCLUSION

This chapter presented the methodology to develop the software development tool

ontology. The process starts with identifying the purpose and scope of the ontology,

followed by the development of feature analysis for the domain of software development

tools, then reasoning and brainstorming about the information generated by the feature

models to select the commonalities between the two tools and build a high level ontology

 37

representing these commonalities. The next step was building more detailed ontologies

for each tool before using UML to represent the relationships between the three

ontologies, and the final step was the documentation of the ontology.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. ESSENTIAL TOOL CHARACTERISTICS

A. INTRODUCTION

In the previous chapter, we presented the methodology used to develop an

ontology for software development tools. We identified the domain analysis as part of

the methodology to generate the essential tools characteristics. In this chapter we are

going to isolate and explain the domain analysis.

B. DESCRIPTION OF THE RATIONAL REQUISITEPRO

Managing requirements is one of the most significant factors in delivering

projects on time, and on budget. RequisitePro helps projects succeed by giving teams

(project managers, quality assurance managers, testers, developers, etc.) the ability to

manage all project requirements comprehensively, while facilitating team collaboration

and communication. It increases the likelihood of delivering qua lity systems on time and

on budget. Rational Software Corporation's RequisitePro is a flexible and easy-to-adopt

requirements management tool, used for documenting and managing requirements

throughout the software lifecycle. Requirements documents, under RequisitePro control,

can be created, modified and managed, and are complemented with database information,

such as requirement attributes, traceability relationships, and revision history.

Additionally, e-mail-enabled discussion groups capture the team feedback on project-

wide or requirement-specific issues [RATI02]. Customers can use RequisitePro’s

predefined project structures out-of-the-box or simply define their own. Moving beyond

conventional requirements management, RequisitePro combines both doc ument-centric

and database-centric approaches. By deeply integrating Microsoft Word ® with a multi-

user database, RequisitePro enables the organization, prioritization, and the easy tracking

of requirements’ changes. RequisitePro can also be extended usin g the RequisitePro

Extensibility Interface, a Component Object Model (COM) -based Application

Programming Interface (API), which allows programmatic access to requirements.

 40

RequisitePro provides:

• access to all requirements for every team member, by using a central
database,

• an easy way to query requirements information for all team members,

• an easy way to check for requirement coverage.

Developers can use RequisitePro to:

• document in detail all features defined by marketing,

• provide quick and easy impact analysis tailored to each team member.

Developers can quickly review the impact of changed marketing requirements on

their specifications; documentation writers can quickly review the impact of any

requirement change on the user manual. Either the Windows client (Rational

RequisitePro) or the Web client (Rational RequisiteWeb) allows users to create, view and

modify requirements stored in a commercially available database (Microsoft Access,

Microsoft SQL Server or Oracle). In RequisitePro, requirements ar e organized by type.

Each requirement type provides a set of requirement attributes, which can easily be

modified [UNDE02].

RequisitePro provides an Import Wizard that allows the user to easily extract

textual requirements from external Microsoft Word documents or databases stored in a

Comma Separated Value (CSV) format. When importing from Word documents, the

requirements, the entire document, or both can be chosen for import into the project.

CSV files need not be created by RequisitePro and may include files saved by

Microsoft Access, Microsoft Excel, or other databases capable of saving data in the CSV

format.

In summary, while RequisitePro's ability to manage text-based artifacts is

excellent, its capacity to handle graphics-based artifacts is lim ited by the functionality

provided by Microsoft Word. The “views workplace” is the primary tool used for

requirement analysis (including linking and tracing) and report generation. From a view,

the user can modify artifacts, artifact attributes, and trac eability relationships. In

addition, requirements can be viewed and be opened simultaneously. Thus it provides a

powerful query facility for viewing requirements any time within the context of its parent

 41

document. RequisitePro allows multiple views and their relationships. View formatting,

loading, saving, and printing are supported. RequisitePro can also export views using

any of several formats including Microsoft Word. RequisitePro is an effective text -based

artifact manager with a limited capacity to handle non-text objects [EVAL02].

1. RequisitePro Feature Analysis

In the feature analysis of RequisitePro, “Projects” are found to be the top-level

objects. Projects are used to define documents, requirements, and requirement attribute

types and provide a mechanism for enabling or disabling the RequisitePro's security

features. Each RequisitePro project is maintained in its own sub-directory and consists

primarily of a database file and the project documents. The project database include the

following information:

• attribute values,

• traceability relationships,

• requirement types,

• attribute definitions,

• document types,

• revision histories,

• security information, etc…

Requirements (in either the “Word Workplace” or a “View Workplace”) may be

easily created, edited, or moved. The user can establish relationships among

requirements. Requirement types, as with document types, are user definable.

Requirements possess attributes and may be arranged in a hierarchy in which each

requirement level depic ts increasing amounts of detail about the related high-level

requirement(s).

Documents are essentially Microsoft Word documents and rely on the project

database for the efficient management of requirements and their attributes. Document

types are user-definable and instances of documents may contain product requirements,

requirement specifications, use cases, test cases, or any other user -specified requirement

types.

 42

Attributes facilitate requirement management by allowing the user to define

properties describing a requirement. These properties include:

• Status,

• Authors,

• Security,

• Priority,

• Stability,

• Version,

• Date, etc…

Attribute values may contain text, numeric data, or may be obtained from user -

defined lists. Attributes are associated with a particular artifact type and can vary from

project to project. Attribute and requirement type definitions from previous projects can

be reused if desired. If the attributes supplied by RequisitePro are insufficient, the user

has the option of defining his own requirement attributes.

Several major features of RequisitePro address the control of access by multiple

users. These features, which provide control at both the project and document level,

include:

• Open Project/Document Options. When opening a project , the user is
given the option to open as Read Only, Exclusive, or both. The Read
Only option gives the user the ability to view but not change the project or
its documents. Exclusive access is available to only one user at a time and
can only be used when another user does not already have the project
open. This mode enables the user to delete items such as document types,
requirement types, attributes, and values without disrupting work
elsewhere. The Read Only and Exclusive options can be combined to
prevent all users (including the current user) from making changes to the
project while the current user has the project open.

• Security Options. The security features of RequisitePro determine the
availability of the Open Project/Document options. Read, update, and
create/delete permissions for specific document and requirement (artifact)
types can be assigned to groups. Where applicable, read and update
permissions can also be assigned for requirement attributes and attribute
values.

• Document Locking. Document locking is a less restrictive form of access
control than the options provided by the Open Project/Document dialog.

 43

Locking applies only to a selected document and prevents the modification
of text, formatting, graphics, etc. while allowing doc ument and
requirement (artifact) properties and relationships to be updated in the
database.

• Display Updates. RequisitePro updates the Word Workplace when the
requirement text in the document is modified and the document is saved.
The “Refresh All” command on the View menu permits the refreshing of
each open view and forces the query for each view to be rerun.

All of this information represents an archetype of the analysis of features. Each

feature was analyzed by reading about its functional and non-functional effect and by the

use of the tool itself. Furthermore, we analyzed, described and documented their actions.

2. Key Functions of RequisitePro

Below are some of the essential features provided by the Rational RequisitePro

tool. It is not necessary that all these features show up in the ontology list presented in

the follow-on discussion, but they do provide a starting place for capturing important

concepts for the feature tree:

• Parses a source document to load requirements into database;

• Synchronizes textual Software Requirements Specification (SRS) with
database contents;

• Defines different attributes for different types of requirements and set
attribute values for individual requirements;

• Defines traceability relationships or links between individual requirements
and between requirements and other system elements;

• Tailors usability options;

• Includes learning aids, such as a tutorial and/or sample projects;

• Integrates with other tools, such as testing, design, and project
management;

• Defines users and groups and their access privileges;

• Enables threaded discussions on requirements;

• Includes web interface for database query, discussion, and the updating of
requirement attributes.

3. Feature Tree of RequisitePro

The complete RequisitePro feature tree is presented and explained in Appendix B.

The following feature tree in Figure 8 is a portion of the tree presented in Appendix B.

 44

This part illustrates the detailed analysis undertaken to track the essential characteristics

of RequisitePro.

Treacability

Track all the
requirements

Set
requirements
relationships

Organize

View chain of
relationships

Identify high
level

requirements

Sort
requirements

Filter
requirements

Capture
requirements

changes

Categorize
requirements

Understand
impact of
changes

Review changes
Requirements

maintainability
Classify by

types
classify by

status

Figure 8. Subset of the RequisitePro Feature Tree.

As shown in Figure 8, the “track all the requirements” is divided into two

mandatory features “set requirements relationships” and “organize”. The “set

 45

requirements relationships” feature is also divided into two mandatory features. The

“identify high-level requirements” feature is divided into two mandatory “Or-features”.

Furthermore the “categorize requirements” feature, derived from the “organize” feature is

divided into two alternative-optional features either “classify by types” or “classify by

status”.

4. Ontology List

The essential characteristics of the RequisitePro tool resulted from the analysis of

the tool and the feature diagram of the tool. These features represent potential ontology

terminology and are listed in the list below. Key artifacts with their actions (behaviors

and attributes) begin to represent the ontology for the Rational RequisitePro tool, and will

be essential in distinguishing and identifying commonalities with features fr om other

tools (such as those of the Software Engineering Automation Tools (SEATools).

Ref # Feature Description
1 Rational RequisitePro Requirements management tool
2 Management Documenting and managing requirements throughout

the development lifecycle
3 Requirements

analysis
Including linking and tracing and report generation

4 Non-functional
features

The subset of non-functional features such as
integration with other tools, security, and remote
usage via web

5 Manage projects Projects are the top-level objects managed by
RequisitePro

6 Manage teams Allow members of the project team to work in a
collaborative environment

7 Manage documents Capture, communicate, organize, and track the
information

8 Set up new project
template

Allows the user to create new project templates from
existing projects

9 Remove a project
from project list

Remove projects from project list

10 Allow project
revision

Allow the revision of the project

11 Unify teams Unify project managers, QA managers, testers,
developers, etc. in communicating and managing
systems requirements

12 Allow Interaction
with stakeholders

Records the thought process behind decisions made
about requirements

 46

Ref # Feature Description
13 Provide standard

project templates
Customers can use Rational RequisitePro's
predefined project structures or define their own

14 Report statistics Requirement metrics provide project managers with
statistics –those statistics are displayed in Excel

15 Provide isolated
database

Each project is maintained in its own sub-directory

16 Synchronize textual
Software
Requirements
Specification (SRS)

Synchronize textual SRS with database contents

17 Manual revision of
the project

Allow manual revision of the project

18 Automatic revision of
the project

Allow automatic revision of the project

19 Notify teams Keep everyone informed of the current requirements
information

20 Discuss and query Enables threaded discussions on requirements
21 Provide collaborative

design environment
Allows the collaboration among the team

22 Record comments Provide a way to record comments
23 Provide Consistency Consistency is checked by other members of the

collaborative team
24 Provide

Synchronization
Everyone informed of the current requirements
information

25 Improve Efficiency Provides mechanisms for better communication
26 Improve

Understandability
Everyone informed of the current requirements
information with traceability to early design
decisions

27 Improve
Effectiveness

Optimize team collaboration around the requirements

28 Ease the Access to
documents

Provide access to all requirements for every team
member, by using a central database

29 Customize the
documentation

Documentation is appropriate to customers

30 Maintain documents Provides a document repository
31 Archive Allow the archiving of old documentation
32 Detect documentation

changes
Automatically detects changes to existing
documentation

33 Monitor linking Defines traceability relationships or links between
individual requirements and between requirements
and other system elements

34 Set up links Create relationships between artifacts in either the
Word or View Workplaces

35 Identify and clear Relationships between previously linked

 47

Ref # Feature Description
suspect links requirements are marked as suspect if the text, type,

or attributes of either requirement is changed. This
relationship can be cleared in either Word or View
workplaces

36 Automatic set to
“suspect”

Allows links to be automatically set to “suspect”

37 Manual set to
“suspect”

Allows links to be manually set to “suspect”

38 Automatically clear
suspect links

Automatic clearing of suspect links

39 Manually clear
suspect links

Manual clearing of suspect links

40 Provide traceability Provide a convenient way of viewing chains of
relationships between requirements

41 Control requirements Control the access by multiple users, which provide
control at both the project and document level

42 Create requirements Create requirements through Word or a View
Workplace

43 Edit requirements Edit requirements through Word or a View
Workplace

44 Verify requirements Ensures that requirements serve as direct input to test
creation

45 Update requirements Updates the Word Workplace when the requirement
text in the document is modified and the document is
saved

46 Add requirements Add requirements to the project database
47 Delete requirements Enable the user to delete items such as requirement

types, and attributes without disrupting work
elsewhere

48 Provide
requirements’ type

Define different types of requirements

49 Assign attributes to
requirements

Defines different attributes for different types of
requirements and set attribute values for individual
requirements

50 Prioritize
requirements

Ensures that the most important things get built first

51 Relocate previous
requirements

Relocate previous requirements

52 Save requirements Saving requirements is supported
53 Label Requirements

temporarily
Provides a change “pending” function, until the
change is appropriately approved

54 Uniquely identify
requirements

 A unique identifier is assigned to eac h requirement

55 Facilitates Developers can assess whether they have

 48

Ref # Feature Description
requirements
coverage analysis

documented in detail all features

56 View approved use-
case

Connects requirements with use-case models
instantly accessible by developers. It helps to ensure
that the implemented functionality reflects the
customer needs

57 Track all the
requirements

Provides views that track the status and attributes of
all the requirements

58 Set requirements
relationships

Establish relationships among requirements

59 Organize
Requirements

Requirements are organized by type

60 Establish requirement
hierarchies

Arrange the requirements’ attributes in a hierarchical
way

61 View chain of
relationships

View the requirements’ chain of relationships

62 Sort the requirements Allow the sorting of the requirements
63 Filter the

requirements
Allow the filtering of the requirements

64 Facilitate the
Understanding of the
impact of changes

Provide easy impact analysis tailored to each team
member

65 Report generation Automatically generates user defined reports
66 Tailors usability

options
Provides the user the ability to set specific usability
options

67 Remote use via web Includes a web interface for database query,
discussion, and for updates to requirement attributes

68 Provides tutorial Includes learning aids, such as tutorial and/or sample
projects

69 Word environment
and import wizard

Fits in customers’ environment, making it easy to use
and adopt and allows the user to extract textual
requirements from external Word documents

70 Integration with
software tools

Integrates with other tools, such as testing, design,
and project management

71 Reduce errors The collaborative environment helps ensure that
errors are identified early and fully corrected

72 Provides Sec urity
mechanisms

Permissions to access particular features are assigned
to specific groups

73 Finds current version
of document

Using the Web access ensures that the stakeholders
always see the most-up-to-date requirements

74 Facilitates contextual
understanding

Allows the user to capture information about the
context from which a requirement has been derived

75 Set user security
privileges

Defines users and groups and their access privileges

 49

Ref # Feature Description
76 Lock documents Apply locking only to selected documents

Table 2. RequisitePro Ontology List.

This ontology list is derived from the feature tree; the order given here to the

features is represented by the order of the features in the different layers of the tree. The

layers are read in a top down approach. The references are allocated to the features

horizontally from left to right layer -by-layer. See Appendix B to get a clear picture of the

feature tree structure of this potential ontology terminology.

C. SEATOOLS

1. Introduction

Software prototyping evolved as an effective solution to tackle problems

generated by the fact that most of the time there is a mismatch at the end of the coding

phase of project development between the product delivered and customer expectations

of what that product should have been. Leffingwell and Widrig in their book Managing

Software Requirement: A Unified Approach present three concepts that describe the

underlying reasons for this mismatch [LEFF00]: 1) the “Yes but…” concept -- where the

user generally likes what he sees but wants changes, 2) the “Undiscovered Ruins”

concept -- where the user sees a piece of functionality that leads him to desire additional

(previously unstated) functionality, and 3) the “Mary had a little lamb” concept -- where

the developer misunderstood what the customer wanted because of semantic ambiguity in

the natural language expression of the customers' requirements. The customer finds the

final product is not exactly what he/she expected, new ideas triggered his/her request to

add new requirements, or the developer misinterpreted the customer requirements. This

mismatch in expectations drives the necessity for effective prototypes (constructed and

modified rapidly, accurately, and cheaply) [LUQI91].

2. Description of the Software Engineering Automation Tools
(SEATools)

Prototyping is the development of an archetype of the final product summarizing

all (or some) of the requirements and the specifications requested by the customer.

 50

Furthermore, the archetype is presented to the customer for evaluation and eventually

provides the developer with the feedback necessary to determine the degree to which the

requirements applied on this scaled down version map to his expectations. As a result,

adding additional requirements, or changing requirements can be done cheaply and

efficiently at this stage of development.

Prototyping has become more feasible with the advent of automated tools

developed to generate the necessary code satisfying specific requirements [BERN96].

Because time schedules, input and output variables, and target languages are crucial in

real-time embedded systems projects, rapid software prototyping has emerged as a

special type of prototyping that allows for improved analysis and design of software

systems [DURA99].

A good example of a tool available for such purposes is the Software Engineering

Automation Tools (SEATools). This tool was developed by the Naval Postgraduate

School, Software Engineering Group. This group has recognized and extolled the use of

computer-aided prototyping in software development as a way to boost the efficiency of

software projects through understandable requirements and validation of the system

design. Concerning the return on investment (ROI), the use of prototyping seems to

generate more benefits than without it. As an illustration, Bernstein in his article

“Forward: Importance of software Prototyping” estimated a net return of $.40 within the

life cycle of the system development for every $1 invested in prototyping [BERN96].

3. Evolution of the SEATools

The original version of SEATools evolved from an integrated collection of tools

that generated source programs directly from high-level requirements specifications

[LUQI88]. Figure 9 illustrates the major functions and components of SEATools

(formally called the Computer Aided Prototyping System (CAPS)) accessible via a user

interface. SEATools provides computer aid for rapidly and inexpensively constructing

and modifying prototypes [LUQI96].

 51

Figure 9. General Structure of the SEATools Environment [USER02].

SEATools was originally developed using the C and Ada programming

languages, and implemented in a UNIX environment. It consisted mainly of three

subsystems:

• Editor subsystem,

• Execution support subsystem, and

• Software base subsystem [MCDO01].

Over the past five years CAPS has slowly begun a transition from UNIX based

systems to a system capable of running on multiple platforms to include Linux and

Microsoft Windows utilizing the portability of the Java programming language. The

system has now been successfully ported to the Java language and implemented in a

standalone version on a PC.

The editor subsystem contains:

• A Prototype Software Development Language (PSDL) editor,

• An Ada editor, and

• An interface editor.

The execution support subsystem embodies:

• A translator,

• A scheduler, and

• A compiler.

The software base subsystem is part of a software database system. It is

characterized by its ability:

 52

• To track all the PSDL description and Ada implementations for all
reusable software components in CAPS.

• To provide reusable software components for each prototype previously
developed in CAPS that has a complete PSDL specification and
executable code.

The SEATools process follows four essential prototyping stages as shown in

(Figure 10).

• Software system design,

• Construction,

• Execution, and

• Requirements evaluation/modification

Generate initial

requirements

Construct/modify
prototype design

Generate target
source code

Demonstrate
Prototype

Modify
requirements

Execution
Support
System

Reusable
Software

DBMS

Software
Database

Design
Database

Figure 10. Iterative Prototyping Process [LUQI02].

Each prototype design starts by identifying and analyzing the problem to be

solved, followed by deciding about the parts to be prototyped. Then, the designer draws

dataflow diagrams using the SEATools PSDL editor. Finally, the prototype is translated

into the target programming language for execution and evaluation. The design database

assists the designers in managing the design history.

 53

4. Summary of Functionality

SEATools has been shown as a powerful research tool in prototyping large

complex embedded software suc h as the command-and-control station, cruise missile

flight control system, missile defense systems. As stated by Luqi et. al. [LUQI02]

SEATools demonstrated payoffs include the ability to:

• Formulate/validate requirements via prototype demonstration and user
feedback,

• Assess feasibility of real-time system designs,

• Enable early testing and integration of completed subsystems,

• Support evolutionary system development, integration and testing,

• Reduce maintenance costs through systematic code generation,

• Produce high quality, reliable and flexible software,

• Avoid schedule overruns.

5. Feature Analysis

 SEATools provides the following kinds of support to the prototype designer:

• Computer-aided design,

• Computer-aided software reuse,

• Time checking,

• Consistency checking,

• Configuration management,

• Evolution Control System.

The feature model described in the SEATools feature tree (Appendix C)

illustrates the different features that make this support possible. This feature model

defines a hierarchical structure over the set of features of the tool. The features in the

feature tree summarize the results of the SEATools features’ analysis as follows:

• All the features represent the important domain terminology that imply
variability (not only functional features but also implementation features
were documented).

• All the features representing the different sets of requirements postulated
by different variability sources for the SEATools domain concept.

• All the high level features appeared to be feature starter sets to start the
analysis (recall that a feature starter set is a set of perspectives for
modeling concepts).

 54

• The features reported in the feature tree are colleted throughout the
development. Some of them are updated and maintained during the entire
development cycle.

• The features represented in the feature model are selected among more
features initially intended to be implemented.

• All kinds of features (mandatory, optional, and alternative) were identified
and represented and present in the feature tree.

To illustrate these points, below is a part of the SEATools feature tree taken from

the complete feature tree in Appendix C. This “subset” was chosen for its representation

of some of the features cited above.

 55

edit

PSDL change interface requirements ada
Caps

default
hardware

model

create
graphical

design

edit graphical
design

view graphical
design view code edit code

Ada SDE OTHER TEXT
EDITOR

Vi Emacs

Figure 11. Subset of the SEATools Feature Tree.

Figure 11 demonstrates the different features derived from the feature “edit”.

These features are all (by chance) “mandatory-features”. However, the very lower level

feature “other text editor” is divided into two mandatory features, but their choice is

alternative.

 56

PSDL Timing
Constraints

Maximum
Execution Time

Minimum
Calling Period

Maximum
Response Time

Periodic
constraints

Sporadic
constraints

Period Finish Within

Non-time-critica
l operations

Figure 12. Timing Constraints Subset of the SEATools Feature Tree.

The timing constraints in SEATools depend on the operation itself, and as shown

in Figure 12, consists of: Maximum Execution Time (MET) that rep resents the longest

time between beginning and completion of execution, Minimum Calling Period (MCP)

representing the minimum time between two successive activations, and the Maximum

Response Time (MRT) showing the longest time between input stream write o utput

stream write.

Once completed, the feature diagram was analyzed to identify potential ontology

terms. These terms were compiled into a SEATools Ontology List.

6. SEATools Ontology List

We arrived at the essential characteristics of SEATools by analyzing the feature

model. Potential SEATools ontology terms are compiled in this list. The artifacts with

their actions (behaviors and attributes) represent possible ontology terminology for the

SEATools, and will be essential to distinguish and identify commonalities with features

from other tools such as those of the RequisitePro.

 57

Ref # Feature Description

1 SEATools Software engineering tools (integrated collection of
tools) for developing prototypes of real-time
systems

2 Management prototype Manage prototypes

3 Build prototype Build prototype

4 User interface Helps user invoke SEATools

5 Develop systems Develop functional prototypes

6 Analyze requirements Analyze requirements through evolutionary
prototypes

7 Generate code Automatic generation of the code

8 Model editor The SEATools editor that helps a user create a
model

9 Modification Modify existing prototypes and graphs

10 Graphical editor GUI interface for data-flow diagrams

11 Expert-system design
mode

Provides a user interface that allows the user to
access SEATools

12 Debugger Finds errors in the model

13 Browser Allows user to browse the model

14 Evolutionary prototype Support evolutionary prototyping

15 Feasibility Assure Feasibility study

16 Project control Assure contro l of projects via the use of merger

17 Interaction Allow interaction with the proposed system with its
environment

18 Constraints Limitations in a development effort

19 Software base One of the five categories of the SEATools
software

20 Execution support system The windows in which SEATools initially invoked

21 Creation Allow the creation of a prototype, PSDL, and

graphs.

22 Adding Allow adding information to an existing prototype

23 Refine systems Allow changes in an existing prototype

24 Deletion Allow the deletion of undesired information

25 Allow communication Allow communication between different parts in the
model

 58

Ref # Feature Description

26 Control communication Control communication between different parts in
the model

27 Tools Differentiate tools

28 Integration of complex
systems

Support integration of complex systems

29 Design Assessment of design

30 Evolution control systems Provide an automated support for coordinating the
efforts of a team of prototype designers and manage
multiple versions of the designs they produce

31 Merger Provides automated prototype change -merging

32 Subsystems Rewrite subsystems

33 Software design Management software design

34 Design base Allow a persistent storage of prototype
development data

35 Translator Allow the translation from PSDL to Ada code

36 Scheduler Creates schedules for Ada code

37 Compiler Compiles the source code

38 Execute system Executes all the Ada code for the currently open
prototype in the designer’s private workspace

39 Designer Design a prototype

40 User One of the potential stakeholders in a project

41 Prototype A sample for representing the requirements

42 Help Assist the user/software engineer when requesting
information about one of the menu buttons

43 Edit Allow the choice from a list of commands include
PSDL, Ada,, Requirements…

44 Essential A category of differentiation for the following
SEATools (user interfaces, editors, the execution
support system, the project control system, and the
software base)

45 Very useful A category of diffe rentiation for the following
SEATools (user interfaces, editors, the execution
support system, the project control system, and the
software base)

46 Useful A category of differentiation for the following
SEATools (user interfaces, editors, the execution
support system, the project control system, and the
software base)

47 Conflict detection Allow and detect conflicts

 59

Ref # Feature Description

48 Warning Warns of any existing conflict

49 Design database

containing PSDL

Contains the PSDL descriptions and working code
for all available reusable software components

50 Construction Allow the construction of a prototype

51 New Allows the user to create a prototype design

52 Quitting Allow to quit and close the SEATools program

53 Commit work Allows prototype design to be entered into the
database

54 Retrieve from database Allows the user to retrieve data from the database

55 Choice Allow the choice of a project

56 PSDL User friendly tool that helps the user/software
engineer construct prototypes using a combination
of graphical and textual objects

57 Interface Invokes Transportable Applications Environment
Plus* (TAE+) to edit the prototype interface

58 Requirements Allows designers to edit a requirements file

59 Ada Allows designers to edit Ada implementation files

60 Caps default Allows designers to choose which text or Ada

editor will be used

61 Hardware model Lets designers check timing constraints relative to a
machine faster or slower than the machine that is
executing CAPS

62 Operating systems Allows models to account for operating systems

63 Assembler Allows models to account for compiler

64 Programming language Allows models to account for language

65 Computer systems Allows models to account for computer systems

66 Libraries Provides libraries

67 Editors Allows user to edit

68 PSDL specifications Track PSDL specifications

69 Executed code Track executed code

* Transportable Applicat ions Environment Plus (TAE+) is a windowing package developed at the

National Aeronautics and Space Administration’s Goddard Space Flight Center. TAE Plus provides either
Ada or C code to create the user interface modules.

 60

Ref # Feature Description

70 Graphical objects (data
flow diagram)

Allow the construction of data flow diagram

71 Textual objects Allow textual objects

72 Data flow diagram Show Existing data flow diagram

73 Computational graphs Allow computational graphs

74 Finding Allow user to find graphs

75 Retrival Allow the retrieval of graphs

76 Graphical design Create graphical design

77 Edit graphical design Edit graphical design

78 View graphical design View graphical design

79 View code View code

80 Edit code Edit code

81 Library reused code Allow the use of a Library of reused code

82 Control constraints Control the process and output generation via a set
of conditions o r predicates

83 Operators Allow the drawing of operators (circles) in a data
flow diagram

84 Streams Allow the drawing of data streams (directed lines)
in a data flow diagram

85 Terminator Allow the drawing of terminators (rectangles) in a
data flow diagram

86 Timing constraints Allow the entry of Timing constraints

87 Ada SDE Is used via the Ada editor by the designer to view
and edit Ada code

88 Other text editor Used to view and edit texts and code

89 Vi Is used via the Ada editor by the designer to view
and edit Ada code

90 Emacs Is used via the Ada editor by the designer to view
and edit Ada code

Table 3. SEATools Ontology List.

This ontology list is derived from the feature tree; the order given here of the

features is represented by the order of the features in the different layers of the tree. The

layers are read in a top down approach. The references are allocated to the features

 61

horizontally from left to right layer -by-layer. See Appendix C for a full picture of the

feature tree structure of this potential ontology terminology.

D. COMMON CHARACTERISTICS OF THE TOOLS

Recall that features in a domain are of two types: common and variable.

Common features [GEYE00] are always part of a system in the regarded domain (a

feature present in all instances of a concept). Variable features are only part of some

systems. However, in this part of the analysis the aim was to collect the common

characteristics for both tools (Rational RequisitePro and SEATools) that may be present

in other tools as well.

We conducted an approach of reasoning and brainstorming about observations

and information generated by the feature models to select the commonalities between the

two tools and build a high level ontology representing these commonalities. We

identified some common characteristics which are features generated in the feature trees

as fundamental ones at an abstract level. These same generic features are likely to be

found in other software development tools. This makes the software development tool

ontology a “pilot” ready for further extension so that it may later include other software

development tools.

Here is the list of the common essential characteristics of the tools that allowed us

to build a high level ontology that will be further explained in the following chapter.

Ref # Feature Description
1 Tool The tool intended to be analyzed and to

incorporate its essential characteristics into an
ontology tailored to this purpose

2 Actor A particular role adopted by the user of an
application while participating in a use case

3 Stakeholders A person, group, or organization with a stake
in the outcome of an application that is being
developed

4 Developers The software engineers who develop a
software project

5 Designers The software engineers who desig n a software

 62

Ref # Feature Description
project

6 Architects The software architects for a particular
software project

7 Team The team involved in any software project
8 Activity Specify the activity, which is anything that

involves doing.
9 Communication Assurance thorough transmission
10 Management Assure control over a project or apart of a

software project
11 Organization Allow the arrangement of the software

requirements of any other information related
to a software project.

12 Sorting Allow the arrangement of a software project
information in a given order

13 Filtering Allow the removal of undesired information
via specific criteria

14 Synchronization Allow the software project stakeholders and
information to operate at the same rate and
time

15 Archiving Allow the archiving of particular documents
related to the activity

16 Maintenance Allow the establishment of the process of
repairing and enhancing an application.

17 Creation Allow the creation of components judged
necessary for the activity

18 Coding Allow Coding
19 Modification Allow changes
20 Verification Ensure that a software application is being

built in the manner planned
21 Artifacts Any kind of data, source code, or information

produced, gathered or used during the
development process.

22 Documentation Assure the documentation of every step taken
23 Statistics Numerical data
24 Database Provide a collection of arranged data for easy

and fast retrieval
25 Feedback Allow feedback
26 Efficiency Provide high quality by improving the process
27

Links_Dependencies_Treaca
bility

Assure the relationships between the different
information and requirements related to a
software project

28 Security Avoid risk and danger
29 Child Parent Assure and identify the child -parent

 63

Ref # Feature Description
relationships in the software project

30 Risk Allow the mitigation of a perceived threat
31 Safety Assure that the projects are hazard-free
32 Project Component Identify all the parts that make the whole

project.
33 Requirements Allow the obtaining of a complete statement

of what functionality, appearance, and
behavior are required of an application

34 Model A view of the design of an application from a
particular perspective, such as the
combination of the application’s classes, or its
event-driven behavior

35 Use Case A sequence of actions, some taken by the
application and some by the user, which are
common in using an application

36 Library Building a collection of information and
material related to a project

37 Prototype An application that illustrates or demonstrates
some aspects of an application that is under
construction

38 Test Assure the determination, the quality, and the
truth of a software project

Table 4. Common Characteristics for High-Level Software Development Tools Ontology.

This list was the result of the analysis of the two ontologies lists representing

RequisitePro and The SEAToolss. It was generated after brainstorming about the more

frequent features that exist in almost all the tools. These features represent the high level

ones.

E. CONCLUSION

In this chapter we presented and explained the domain analysis and identified the

essential tools characteristics. For both RequisitePro and SEATools we described each

tool, explained our approach to analyze the features, and identified ontology lists for each

tool. Finally, we illustrated the common characteristics existing in both software

development tools. Accomplishing the previous steps leads us to the next step “building

the software development tool ontology.”

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

V. THE SOFTWARE DEVELOPMENT TOOL ONTOLOGY

A. INTRODUCTION

This chapter discusses and presents the software development tool ontology as a

collection of classes using the Unified Modeling Language (UML). The ontology is

intended to be used in conjunction with formal models of the software development tools

domain (such as within an interoperability model of the domain), and thus it is important

that the language used to describe the ontology have formal semantics. Unfortunately,

such formal semantics are not provided for in UML. However, UML has become a

recognized and highly used standard for describing the relationships of objects. UML

also has a very large and rapidly expanding user community. Therefore, we propose to

use UML to illustrate the logical associations between key elements of the ontology (i.e.

class names and relationships), but will rely on Protégé to record any formal semantics

(such as constraints within or between classes).

B. OVERVIEW OF UML

The Unified Modeling Language (UML) helps in specifying, visualizing, and

documenting models of software systems, including their structure and design. UML

defines twelve types of diagrams [INTR02], divided into three categories: four diagram

types to represent static application structure; five diagrams to represent different aspects

of dynamic behavior; and three diagrams to organize and manage application modules:

• Structural Diagrams include: the Class Diagram, Object Diagram,
Component Diagram, and Deployment Diagram.

• Behavior Diagrams include: the Use Case Diagram, Sequence Diagram,
Activity Diagram, Collaboration Diagram, and Statechart Diagram.

• Model Management Diagrams include: Packages, Subsystems, and
Models.

Among the UML diagram types that can be used to model the static and dyna mic

behavior of a system, we have chosen to model our ontology as a static model consisting

of a class diagram to depict the classes in the domain and their relationships.

Additionally, we use Packages as parts of Model Management Diagrams as well. All

 66

three ontologies are described as class diagrams and appear in figures throughout this

chapter.

The next three sections of this chapter present the UML representation of the

three ontologies given in the following order:

• UML description of RequisitePro ontology

• UML description of the SEATools ontology

• UML description of the high level ontology

The fourth section illustrates the description of the inter-relationships between the

three ontologies represented using the UML notation. Different colors are used in

representing the UML description of the three different ontologies for the purpose of

identifying the elements of the different ontologies in a distinctive way, and to clearly

show their interrelationships. The representation of the relationships of th ree ontologies

follows the pattern established in Figure 13. The purple classes represent those classes

within the RequisitePro ontology; the yellow classes represent those of the SEATools

ontology and finally, the blue classes represent those of the high level software

development ontology.

High-level
ontology's Classes

RequisitePro's
Classes

SEATools'
Classes

Figure 13. Relationship Between the Classes of the Three Ontologies.

C. UML DESCRIPTION OF REQUISITEPRO ONTOLOGY

Classes describe concepts in the domain. For example, a concrete class of

“Requirements” could be used to help represent later instantiated requirement objects.

Specific requirements become instances of this class. A class can have subclasses that

 67

represent concepts that are more specific than the superclass. In practical terms,

developing an ontology includes:

• defining classes in the ontology (as well as defining attributes of the
classes),

• arranging the classes in a taxonomic (subclass–superclass) hierarchy,

• identifying and noting relationships between classes,

• establishing and noting any constraints between classes.

In the class diagrams, classes are represented by boxes with three parts: the name

of the class, the attributes of the class (specified by their name, type and visibility) and

the operations of the class (specified by name, argument list, return type and visibility).

For the purposes of annotating our ontologies in this chapter, we do not list either the

attributes or operations in our ontologies (these details are included in the full Protégé'

data base of the ontology classes).

The following figure (Figure 14) represents the UML description of RequisitePro

ontology. This representation consists of a package of the requirement management tool

RequisitePro. The package contains a class diagram consisting of the main classes of the

tool from an Extensibility User Interface (RequisitePro's Application Programming

Interface (API)).

 68

ServerInformation

Application

Projects Errors GUI Catalog

CataloItem
Project

Discussions
RelatedProjectCon

texts
Documents Views

Queries

Discussion
RelatedProjectCon

textDocument View
Query

Responses DiscussionLinks

Response

Properties

Property

ReqProCollection

Requirements

Requirement

Revisions Relationships

RelationshipRevision

AttValues

AttrValue

ListItemValues

ListItemValue

RootPackage

Package iPackage

Revisions

Revision

Users

User

Groups

Group

Permissions

Permission

DocTypes

DocType

ReqTypes

ReqType

Attrs

Attr

ListItems

ListItem

RequirementBucket

iPackageable

RequisitePro

Figure 14. UML Description of RequisitePro Ontology.

This representation of a global class diagram is intended to show the relativ e size

and composition of the entire ontology; it will be further shown in smaller diagrams

providing greater detail.

1. Class Diagram: Application

The Application object (see Figure 15) represents the main object of the

RequisitePro Extensibility Interfac e that provides access to many other objects. Among

the other objects present in this class diagram, there is Errors object that holds

information about current and previous errors that occurred during the current

Component Object Model (COM) session and a Projects object (a collection of opened

Project objects). The GUI object is used by the RequisitePro application to access GUI

dialog boxes, the Catalog object is a collection of projects accessible in RequisitePro.

The ReqProCollection object is a generic collection object. Note that three objects

 69

(Properties, Property, and ReqProCollection) exist in the class diagram and are not

related to other objects.

ServerInformation

Application

Projects Errors GUI Catalog

CataloItemProject Properties

Property

ReqProCollection

.

.

.

Figure 15. Class Diagram: Application.

This UML representation shows the different classes introduced in the super-class

Application. These classes include the Projects, GUI, Properties…etc. The relationships

between project, projects, and application are the most important classes in this diagram.

These relationships illustrated in the ontology help achieve a degree of success in

engineering software systems (partially determined by how easily they are developed).

Furthermore, the ontology may standardize software projects when viewing a project as a

container for documents subjec ted to revision management and archiving. The kind of

standardization reduces duplication of effort, enhances interoperability and promotes

cooperation by developing a common communication library for all software projects.

2. Class Diagram: Package

The Package object is an object that represents a RequisitePro package. Packages

can contain other packages, requirements, views and documents. Package implements

the iPackage and the iPackageable interfaces. Among the other objects present in this

 70

class diagram, we have: the Views object (a collection of View objects), the View object

(an object that represents a single view), the Documents object (a collection of Document

objects), the Document object (an object that represents a single RequisitePro documen t),

and Requirement object (an object that represents a RequisitePro requirement).

Project

Documents Views

Document View

Requirements

Requirement

RootPackage

Package iPackage

iPackageable

.

.

.

.

Figure 16. Class Diagram: Package.

Figure 16 shows the different classes included in the UML class diagram

Package. The relationships between RootPackage, Package, iPackage, and iPackageable

Objects represent the central concepts resulting from this class diagram. The

RootPackage object represents the container and the starting point for all user defined

packages. The RootPackage object implements the iPackage interface.

3. Class Diagram: Project Data

This class diagram introduces the objects representing the Project Data. Besides

the objects described previously in the class diagrams that preceded this one (Documents,

Views, RootPackage Objects, etc…) t here is a DiscussionLinks Object (a Collection class

returned by a Discussion object’s DiscussionRequirements, DiscussionUsers, and

DiscussionGroups properties). A method of the DiscussionLinks class will return a

requirement, user, or group key based on which discussion property returned the

 71

DiscussionLinks collection. The RequirementBucket object is an object-oriented

container in which logically grouped requirements can be collected, stored, and

transported as a single unit. It is one of the essential objects in the class diagram because

this kind of organizer (whether for requirements collection, requirements transfer, or

documentation) is designed to facilitate the dissemination, communication and use of

information by multiple producers and users. Most interoperability problems are caused

by data interpretations, and inconsistent assumptions. However, by fitting data into the

ontology we can tackle these challenges.

Project

Discussions RelatedProjectCon
textsDocuments ViewsQueries

Discussion RelatedProjectCon
textDocument ViewQuery

Responses DiscussionLinks

Response

Revisions

Revision

RequirementBucket

RootPackage Requirements

Revisions

Revision

.

.

.
.

Figure 17. Class Diagram Project Data.

Figure 17 illustrates the different classes that exist in the class diagram Project

Data. The relationships between Views, Revisions, Discussions, Queries, and

 72

Documents are the most important relations in the diagram. These relationships provide

an ability to create links between software project artifacts and trace the established

relationships, which fulfill the main goal of the ontology in allowing better

understandability among all software project stakeholders in a unified framework

applicable for any software development tool. Additionally, these are the very important

artifacts that we want to forward/exchange and transfer between software development

tools.

4. Class Diagram: Project Structure

The RequisitePro Extensibility Interface supports full project structure control,

including creation, modification, and deletion of document types, requirement types,

attributes, and list items. In addition, the full control of project security allows users to

define groups, users, and permissions for all objects. The Extensibility I nterface allows

users to open multiple projects at one time.

 73

Project

DocTypes

DocType

ReqTypes

ReqType

Attrs

Attr

ListItems

ListItem

.

.

.

......

Figure 18. Class Diagram: Project Structure.

Figure 18 illustrates the different classes that exist in the class diagram Project.

The relationships between the objects emerge from this class diagram. A categorization

of the project is very important in the ontology because it allows the organization and the

traceability of requirement details in order to ensure the proper resources are committed

to the project during the requirements development phase. Attributes provide a means to

 74

define different types of requirements by establishing information relationships between

multiple documents, assigning attributes to the information, such as task assignment, and

priority and status. All requirements are not created equal nor can it be expected that all

requirements have the same attributes – the “attributes” classes allow us to define the key

attributes of a type of requirement in a project. The project structure as viewed by

RequisitePro is very important from an interoperability standpoint.

5. Class Diagram: Project Security

The Project Security class diagram shows the different objects related to the way

in which RequisitePro establishes and maintains the security features of a pr oject (who

can modify what, and when). These objects include the Users object (a collection of all

User objects for a given project), the User object (an object that represents an authorized

RequisitePro user), the Groups object (a collection of Group objects), the Group object

(an object that represents a RequisitePro security group, the Permissions object (a

collection class containing individual permission objects), and finally the Permission

object (an object that holds information about a given group’s permissions for attribute,

document type, list item, or requirement type data).

 75

Project

Users

User

Groups

Group

Permissions

Permission

. . .

.

.

.

. . .

Figure 19. Class Diagram: Project Security.

This figure represents the different classes that provide aspects of Project

Security. These classes show the dif ferent parts involved in establishing the security and

permissions framework within RequisitePro such as “groups” and “users”, as well as

“permissions.”

6. Class Diagram: Requirements

The Requirements object is a collection of Requirement objects, (an object that

represents a RequisitePro requirement). These in turn consist of Revisions, Attributes

(AttValues), and Relationships.

 76

Requirements

Requirement

Revisions Relationships

RelationshipRevision

AttValues

AttrValue

ListItemValues

ListItemValue

. . .

.

.

.

Figure 20. Class Diagram: Requirements.

Figure 20 represents the different classes that exist in the class dia gram

Requirements and represent its subclasses such as Revisions, Attribute values, and

Relationships. RequisitePro is a requirement tool and its most important artifact is

requirements. Moreover, this class diagram gives the ability to get, change, verify, add,

and delete requirements.

Since one of the goals of the ontology is to provide interoperability between

different software development tools, establishing a framework for reviewing

requirements change and establishing appropriate relationships is essential and must be

 77

accounted for in the ontology. Moreover, the ontology will provide opportunities for

users to compare the vocabulary of different tools for better results.

D. UML DESCRIPTION OF THE SEATOOLS ONTOLOGY

We used the “Together” software to reverse-engineer the SEATools source code

and obtained the UML class diagrams shown in Figure 21. This is just a subset of the

overall class diagram for SEATools. The major structure of the SEATools ontology as

presented in its UML Description consists of four Packages (PSDL, GraphEditor,

PSDLBuilder, CapsMain) that divide and organize the SEATools model in much the

same way that directories organize file systems. Each package corresponds to a subset of

the model and contains, classes, as well as their relationships.

Decomposition into packages is not the basis for a functional decomposition; each

package is a grouping of elements according to purely logical criteria generated from the

SEATools source code. The four packages are themselves encapsulate d into the

SEATools package as shown in Figure 21. This representation of SEATools encloses

four sub-Packages containing different class diagrams accounted for in building the

SEATools Ontology. Figure 21 is intended to show the relative size and composit ion of

the entire SEATools ontology and will be further illustrated in smaller diagrams showing

more detail in the following sections.

The most important point to glean from Figure 21 is that each package has a

specific purpose. For instance, the package Prototype System Description Language

(PSDL) provides a uniform conceptual framework and high-level system description.

The GraphEditor package allows the user to interactively create and modify PSDL

graphs. The CapsMain package presents the basics of the SEATools development

environment.

 78

DtaFlowComponent

Edge Vertex

PsdlTime

DataTypeObject DataTypes TimerOp

TypeOpExceptionGuard OutputGuard

PSDL GraphEditor

VertexProprieties EdgeProprieties

PSDLBuilder

PsdlBuilderConstant

PsdlBuilder

Token

CapsMain

CapsResultList CapsAdaFileList

CapsMainWindow

ExecutePrototype SchedulePrototype TranslatePrototype CompilePrototype

SEA Tools

Figure 21. UML Description of the SEATools Ontology

 79

1. The PSDL Package

The PSDL Package contains various parts each of which comprises the

components of a PSDL Graph (consisting of Vertices, Edges, etc…). Dataflow

represents discrete transactions while PSDL Timers (a software stop watch), and others

such as timer ops (for invoking a text window to view or edit the operator’s timer

operations) represent the timing operations and constraints in a PSDL Graph. Output

Guards (a feature for invoking a text window to view or edit the operator’s output guard)

are used to selectively suppress outputs from operators. Exception Guards (a feature for

invoking a text window to view or edit the operator’s exceptio n guards) are also

conditions that are evaluated when exception data streams are created. Both of these help

to implement real-time timing requirements in a software system.

DtaFlowComponent

Edge Vertex

PsdlTime

DataTypeObject DataTypes TimerOp

TypeOpExceptionGuard OutputGuard

PSDL

Figure 22. The PSDL Package.

 80

Figure 22 shows the PSDL Package containing different classes and a data flow

component class diagram. The prototype is the most important part of SEATools, and

PSDL is the powerful artifact behind prototyping. PSDL manages dataflow components

(edges and vertices). PSDL is designed for specifying hard real-time systems. It has a

rich set of timing specification features and offers a common baseline from which users

and requirements engineers describe requirements. The formalism of PSDL descriptions

of the prototype are precise and unambiguous and promote better interoperability and

understandability. The data flow diagram augmented with control and timing constraint

and PSDL file (together with timing constraint information) allow the user to model the

different aspects of the prototype consistent with the requirements. Moreover,

information from the prototypes (data flow diagrams) will be used by other software

development tools via the ontology. Finally, it is worth saying that this part of the

ontology gives us access to the prototype.

2. The Graph Editor Package

The Graphic Editor is one component of the SEATools user interfaces. It allows

the interaction with other SEATools processes, supplies an interface with other software

tools, and allows a user to manipulate PSDL graphs.

 81

GraphEditor

VertexProprieties EdgeProprieties

Figure 23. The Graph Editor Package.

The Graph Editor Package contains two classes: Vertex Proprieties class and

Edge Proprieties Class. These two classes are among the most important classes of the

ontology since they specify the key propertie s of the two major components (vertices and

edges) of a PSDL prototype. These components tend to provide concise and meaningful

implementation of any requirement presented by the user. They may be translated to

other tools/prototypes that implement such requirements differently. Moreover, the

graphical editor is used to draw dataflow diagrams annotated with nonprocedural control

constraints as part of the specification of a hierarchically structured prototype.

 82

3. The PSDL Builder Package

The PSDL Builder package is the third sub-package in the SEATools ontology. It

encapsulates the main classes involved in building a PSDL prototype. The classes are as

follows: PSDLBuilderConstant, Token, and PSDLBuilder.

PSDLBuilder

PsdlBuilderConstant

PsdlBuilder

Token

Figure 24. The PSDL Builder Package.

This Package contains a PSDL Builder class diagram. It shows three kinds of

relationships existing between the classes. The diagram illustrates the relationship

between PsdlBuilder class and PsdlBuilderConstant class. The PsdlBuilder class is

associated uni-directionally to the Token class. Note also that the latter class presents

two self-delegations. The class PSDL Builder allows the development of the PSDL

model; the class “token” provides Ada symbols that are reserved symbols used by the

 83

compiler for performing operations and calculations. Again different techniques are used

in other software development tools, and by fitting these essential features (together with

other techniques used by other tools for similar purposes) into our ontology,

interoperability will be achieved and the software development tools will be able to trade

and properly translate similar information.

4. The Caps Main Package

The Caps Main Package describes various classes related to prototypes introduced

through the Caps Main Window. This sub-package introduces the classes

(SchedulePrototype, TranslatePrototype, CompilePrototype, ExecutePrototype) needed to

transform the prototype from a simple graphical representation of the system into an

executable software prototype. The TranslatePrototype class translates the prototype

through a translator designed to generate code that binds components that have either

been extracted from the software base or have been custom-built. The SchedulePrototype

class invokes a real-time scheduler that generates two types of schedules depending on

the priority and type of the prototype's timing criteria and constraints. The

CompilePrototype and the ExecutePrototype classes attempt to compile the prototype

(i.e., Ada modules and programs) and to run an executable prototype system. The

execution support system consists of a translator, a scheduler and a compiler to facilitate

the testing of the prototypes.

 84

CapsMain

CapsResultList CapsAdaFileList

CapsMainWindow

ExecutePrototype SchedulePrototype TranslatePrototype CompilePrototype

Figure 25. The Caps Main Package.

Figure 25 shows the class diagram of the Caps Main Window. These classes

address the problem of how to produce an executable prototype summarizing all the

requirements. Different software development tools may generate distributed and

heterogeneous software projects that may work together via multiple communication

links and protocols. The prototyping classes created and used in the CapsMain Package

 85

are important to the ontology so that exernal tools can create, modify and use reliable,

executable prototypes created in SEATools.

E. UML DESCRIPTION OF THE HIGH LEVEL ONTOLOGY

The high level Software Development Tool Ontology was constructed to be

applicable (and extensible) to any software development tool and includes classes that are

often found in software project development. Figure 26 shows the entire High Level

Ontology; however, the ontology will be further illustrated in additional diagrams that

better show the relationships between all these classes.

Tool

Stakeholders Team

Developers ArchitectsDesigners

Activity ArtifactActor

Documentation FeedbackEfficiencyProjectComponentStatistics
LinksDependency

Traceability
Database

Requirements LibraryUseCaseModel

Security SafetyRiskChildParent

Communication Management

Maintenance ModificationCreationOrganization Verification

Sorting ArchivingSynchronizationFiltering

T e s tCode Prototype

Figure 26. UML Description of the High Level Ontology.

Essentially there are three major parts to the ontology: artifacts (dealing with all

objects developed in a software project), actors (stakeholders and teams involved in a

software project), and activities (required throughout the life-cycle of a software project

from management to communication). These main parts will be introduced in greater

detail in the next sections.

1. Class Diagram: Artifact

The Class diagram Artifact expresses, in a general way, the static structure of the

artifacts that a software development system (software project components and

 86

characteristics) might produce in terms of classes and relationships between those classes.

Just as a class describes a set of objects, an association describes a set of relationships;

objects are class instances, and links are association instances. This class diagram does

not express anything specific about the links of a given object, but it describes, in an

abstract way, the potential links from an object to other objects.

Artifact

Documentation FeedbackEfficiencyProjectComponentStatistics LinksDependency
Traceability

Database

Requirements LibraryUseCaseModel

Security SafetyRiskChildParent

TestCode Prototype

.

.

.

Figure 27. Class Diagram Artifact.

Figure 27 shows the different classes introduced in the super -class “Artifact.”

These classes include the documentation, links -dependency-traceability, …etc. This is

not intended to be an all inclusive list of artifacts; this diagram can be extended as new

artifacts (from other tools) are integrated into the ontology. In including these artifacts

(with their structures) in the ontology we are likely to integrate an important section of

knowledge shared by various software development tools (expressed in different words).

Artifacts are the main things we want to trade between tools, that is what makes them so

important.

 87

2. Class Diagram: Activity

Successful software development tool use requires actively managing different

interactions (activities). All the objects derived from the Activity class are integral parts

of the software development tools. Any “activity” in a software development tool

environment is undertaken with the aim of directly or indirectly producing (or improving)

a software development artifact.

Activity

Communication Management

Maintenance ModificationCreationOrganization Verification

Sorting ArchivingSynchronizationFiltering

.

.

.

Figure 28. Class Diagram Activity.

This class diagram shows many of the common “activities” represented by classes

that can be used in software project development. This is not intended to be an all

inclusive list of activities; this diagram can be extended as new activities (from other

tools) are integrated into the ontology. As a result, the integration of these activities into

 88

the ontology will facilitate interoperability with the different tools using diff erent

structures.

3. Class Diagram: Actor

The class diagram Actor represents all the people involved in software project

development. The structure describes Actor as a class, where the sub -classes

(Stakeholders and team) are derived from it. Moreover, the classes developers, designers,

and architects are themselves derived from the class stakeholders.

Stakeholders Team

Developers ArchitectsDesigners

Actor

.

.

.

Figure 29. Class Diagram Actor.

This Class diagram shows all the classes of people (or teams of people) that may

participate or be involved in any software project development. The main conclusion that

would be drawn from this diagram is that the class Actor and its subclasses form the main

group involved in any software project. By integrating them in our ontology, we make

them explicit and we avoid confusion and ambiguity.

F. UML DESCRIPTION OF THE INTER-RELATIONSHIPS BETWEEN
THE THREE ONTOLOGIES

We identified the characteristics of each individual software development tool

that must be accounted for within the higher -level ontology. In the following class

diagrams we introduce views as a way of illustrating the inter -relationships between the

 89

two individual tool ontologies and the high-level ontology. These inter-relationship class

diagrams form the basis for establishing interoperability between the tools using Young's

OOMI methodology [YOUN02].

1. Class Diagram: Communication

When properly managed, a Software project usually has a communicated set of

processes that address the daily activities of the project. As a result, all the peop le

involved in any software project understand their roles and responsibilities and how they

fit into the big picture, thus promoting the efficient use of resources. Each software

development tool has its own way of communication, and the following diagram

illustrates our view of the interoperability between the three ontologies (RequisitePro,

SEATools and high level) with respect to communication.

Figure 30 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the level of communication. We view the inter -

relationship between the three ontologies in communication as a generalization. Since

we adopted only classes in the UML descriptions of our ontology, we assume that the

attributes, operations, relationships and constraints defined in the superclass

Communication are fully inherited in the subclasses.

 90

CapsResultList CapsAdaFileListDiscussionsQueries

DiscussionQuery

Responses DiscussionLinks

Response

Communication

CapsMainWindow

Figure 30. Class Diagram: Communication.

2. Class Diagram: Prototype

One of the best ways to test the usability of a product while there is still time to

make changes is to develop a prototype. The idea is to build a mock-up of the product,

which simulates the look and feel of the interface and brings many of the complex

interaction problems out. Review of the prototype enables users, pr oject managers, and

developers to agree on how an application should look. The following class diagram

describes our view of the inter -relationship between the three ontologies at the prototype

level.

 91

Prototype

DtaFlowComponent

Edge Vertex

PsdlTime

TimerOp ExceptionGuard PutputGuard VertexProprieties EdgeProprieties

Figure 31. Class Diagram: Prototype.

Figure 31 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the Prototype level. Although, note that there is no

matching ontology class from the RequisitePro ontology for Prototype.

The generalization relationship expresses the fact that the elements of the

Prototype class are also described by details of the Vertex and Edge sub -classes. The

open arrows symbolize the navigation property of associations. Associations describe the

network of structural relationships that exist between the different classes, and give birth

to links between the objects that are instances of these classes.

3. Class Diagram: Creation

The class diagram Creation describes the inter-relationships between the three

ontologies when dealing with the creation of any software project. The prototype is also

considered as an archetype of a project. Therefore, its creation is also considered.

 92

ExecutePrototype SchedulePrototype TranslatePrototype CompilePrototype

Creation

Figure 32. Class Diagram: Creation.

Figure 32 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the Creation level. Also note that there is no

matching ontology class from the RequisitePro ontology for Creation. We adopted the

same view as before, and we considered the main inter-relationships as a generalization.

4. Class Diagram: Actor

The following diagram depicts our view toward the inter-relationships existing

between the three ontologies generated from the superclass Actor.

Figure 33 shows the interoperability among the three ontologies

(RequisitePro, SEATools, and the high level one) at the Team level. Although, note that

there is no matching ontology class from the SEATools ontology for Actor. The choice

of “Users” as a sub-class of designers was derived from the RequisitePro structure.

 93

Stakeholders

Users

Team

Groups

Actor

Developers Designers Architects

User

Group

Figure 33. Class Diagram: Actor.

5. Class Diagram: Documentation

The role of documentation in any project development is critical. Specifications,

designs, business rules, inspection reports, configurations, code cha nges, test plans, test

cases, bug reports, user manuals, etc. should all be documented. The following diagram

describes one way of representing the inter -relationships between the three ontologies for

the class Documentation.

Figure 34 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high leve one) at the Documentational level. Although, note that

there is no matching ontology class from the SEATools ontology for Documentation.

Note that the generalization is “multiple”, and several arrows are drawn from the

subclasses to the various superclasses.

 94

Documents

Document Revisions RevisionErrors

DocumentationVerification Maintenance

Figure 34. Class Diagram: Documentation.

6. Class Diagram: Requirements

Requirements are the details describing an application's externally perceived

functionality and properties. The following diagram summarizes the UML description of

the inter-relationships between the three ontologies toward Requirements.

 95

Requirements

Requirement

Revisions Relationships

RelationshipRevision

AttValues

AttrValue

ListItemValues

ListItemValue

Requirements

Figure 35. Class Diagram: Requirements.

Figure 35 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the Requirements level. Again, note that there is no

matching ontology class from the SEATools ontology for Requirements. The

 96

requirements of the high-level ontology represents the high level class from which

derived the subclass RequisitePro requirements.

7. Class Diagram: Model

A comprehensive model integrates existing techniques and standards for

modeling software products, processes, and people. We have analyzed the model to

identify the key relationships that integrate the three ontologies. Our effort resulted in the

following diagram that focuses only on the software project as a main subclass of the

superclass model.

Project

DocTypes

DocType

ReqTypes

ReqType

Attrs

Attr ListItems ListItem

Model

Figure 36. Class Diagram: Model.

Figure 36 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the Model level. Note that there is no matching

 97

ontology class from the SEATools ontology for Model. Recall that while the PSDL

prototype is considered a “model”, it was integrated with the higher ontology through

“Prototype”. The main point to get out from this class diagram is the generalization

relationship that exists between model and project.

8. Class Diagram: Security

The security of software projects represents an essential step in assuring its

success. The following diagram describes the inter -relationships between the three

ontologies for security.

Permissions

Permission

Security

Figure 37. Class Diagram: Security.

Figure 37 shows the interoperability among the three ontologies (RequisitePro,

SEATools, and the high level one) at the Project Security level. The Permissions class

generated by the UML description of RequisitePro ontology is considered as a subclass

of the superclass Security generated from the UML description of the High-level

ontology. Note that there is no matching ontology class from the SEATools ontology for

Security.

G. SUMMARY

In this chapter we have presented each individual tool ontology, the high -level

ontology, and the inter-relationships between these ontologies using UML. We

addressed the complex issues of defining class hierarchies. However, there is no single

 98

static ontology for any domain. Ontology design is a continuing, creative process. This

Software Development Tool Ontology was developed as part of the establishment of a

Holistic Framework for establishing interoperability of heterogeneous software

development tools and models. Its scope is limited to those core features required for the

software project development. The development of the ontology has taken account of

other external ontology developments whenever possible; however, the goal was always

to be compatible with existing ontologies where possible. This ontology will be further

refined and extended throughout the future as new software development tools are

integrated into the ontology.

 99

VI. CONCLUSIONS

Software development tools are heterogeneous software systems that present

many challenges in interoperability. These challenges stem from complex issues on t he

choice of the types of information that might be able to be captured and the relevant

knowledge structure that needs to be presented in an optimal way. We observe that

disparate backgrounds, tools, and techniques are a major barrier to effective

communication among people, organizations, and/or software systems. We show how

the development and implementation of an explicit account of a shared understanding

(i.e. an “ontology”) in the software development tools area, can improve such

communication, which in turn, can give rise to greater reuse and sharing, interoperability,

and more reliable software.

Among the foundation and related works that formed a basis for this ontology,

Young [YOUN02] proposed an object-oriented methodology for establishing

interoperability between heterogeneous systems that allows interaction between their

different objects. He proposed resolving the differences between existing systems via the

establishment of a Federation Interoperability Object Model (FIOM). The establishmen t

of such object federation between existing process model together with the integration of

the federation with the extended evolution model, will generate an availability of inputs

and outputs between subordinate models.

The issues and challenges posed by the heterogeneity of software development

tools were addressed by identifying and defining the essential characteristics of two

software engineering tools: a Requirement's Engineering Tool (Rational Software

Corporation's RequisitePro), and a software prototyping tool (Software Engineering

Automation Tools (SEATools)), developed by the NPS’s software engineering group.

The approach undertaken was to construct a “pilot” ontology that might be extended in

the future to include other software development tools. The essential idea was to capture

the commonalities between these two tools and express them in such a way that would

promote interoperability and enhanced communication.

 100

The approach to this portion of the research was to analyze the structure, in puts,

and outputs of the two individual tools, perform a domain analysis (of this subset of

tools) and produce a feature model of that domain. Following from this analysis was the

task of identifying the characteristics of each individual software develop ment tool that

must be accounted for within higher -level ontology.

The ontology that was generated in this research was influenced by the future goal

and intended use of the ontology. In this case, the intended use was to establish

interoperability between all software development tools (with a near -term goal of

establishing interoperability between two specific tools). These two tools were not

chosen arbitrarily. The future purpose of the ontology biases the choice of the particular

set of features that are analyzed. The future purpose biases the organization of the

domain of interest by highlighting commonalities and resemblances needed for the given

purpose.

The choice of a proper ontology for the software development tools was very

important factor in accomplishing the task of interoperability building and structuring, far

beyond the issue of the representation of the inventory of the software development tools’

features. All the following factors were taken into account in developing the

methodology adopted in the development of the ontology:

• The Role of the Ontology

The major role of the software development tool Ontology is to act as a

communication medium between different software development tools and people

(including users, developers and all the stakeholders) across any software project

development environment.

• Scope

Considerable time and effort was devoted to deciding the scope and boundaries

for the software development tool ontology. We began by brainstorming to identify as

many potentially important features as possible. This produced a totally unstructured list

of words and phrases corresponding to a wide variety of features relevant to software

development tools. These were then grouped into various areas and functionalities such

that there was more similarity in meaning and a need to refer to terms within an area than

 101

between different areas, e.g. Tool, Activity, Actor, and Artifacts. Within each work area,

the terms were assigned priorities indicating the importance of including th em in the

ontology. For each feature, terms were chosen depending on the task assigned to each

feature, and definitions given.

• Choosing Features and Terms

The terms in the software development tool Ontology have been chosen as far as

possible to match the natural use of English words by people managing software projects

and using software development tools. This is often difficult. For a term to be used in

the ontology, the meanings were specifically defined.

• Specification of the Ontology

We defined the classes and the class hierarchy using two approaches (top-down

and bottom-up approaches)

• A top-down development process that starts with the definition of
the most general concepts in the domain and subsequent
specialization of the concepts. For example, we started by creating
classes for the general concepts of each super -class such as
“requirements.” Then we specialized the super -class by creating
some of its subclasses.

• A bottom-up development process that starts with the definition of
the most specific classes, the leaves of the hierarchy, with
subsequent grouping of these classes into more general concepts.
For example, we start by defining classes “sort” and “filter.” We
then create a common super -class for these two classes-organize-
which in turn is a subclass of “activity.”

Figure 38 below shows the representation of the Protégé representation of the

high level Ontology. The three main classes (Artifacts, Actor, and Activity are found at

the top level of the ontology).

 102

Figure 38. The Different Levels of the Software Development Tool Features.

Actor, Activity, Artifact are the more general features a form the top level.

Security, risk, and safety are some of the most specific classes in the hierarchy and thus

are at the bottom level.

The methodology we used to arrive at the software development tool ontology is

as important as the ontology itself and represents one of the major accomplishments in

this Thesis. While the ontology will determine whether the interoperability ontology for

the two software development tools (Rational RequisitePro) and Software Engineering

Automation Tools (SEATools) is appropriate, the methodology will ensure that the

 103

ontology can be later extended with the inclusion of additional tools. The Software

Development Tool Ontology should not be considered static; it is an evolving definition

of terms. It will be further refined and extended as needed to integrate other software

development tools into the ontology. The ontology will be of interest to whoever is

interested in improving the interoperability and improve the communication between

software project stakeholders

The contributions presented in this thesis are the following:

• Development of a methodology based on feature modeling to identify the
essential characteristics of software development tools applicable to other
software development tools.

• The building of a “pilot” Ontology for the domain of software
development tools using “Protégé 2000”.

• Identification of the commonalities between two specific development
tools’ (Requisite Pro an SEATools).

Finally, it is important to note that there is no single static ontology for the

software development tool domain nor did we attempt to define one. The ideas that we

present here are the ones that we found useful in our own ontology-development

experience leading to the beginnings of an ontology that may one day establish the

interoperability of all software development tools.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX A. REQUISITEPRO FEATURE TREE

The feature diagrams for the following tools: RequisitePro requirements

management tool and the Software Engineering Automation Tools (SEATools) serve as

an exploitation of the approach of feature modeling in a constructive way to show the

eventual interoperability between these two software engineering tools. The choice of

these tools was tailored by the fact that this subset includes both a commercial and

research tool and represents substantial elements of the software development process

itself. The feature tree is a representation of the essential features for each software

development tool, part of this research.

In Figure 39, the RequisitePro feature tree represents the entire tools’ features.

This tree will be further showed in more detailed subsets in the following parts.

 106

P
ro

je
ct
 r
ev

isi
on

S
et
 up

 ne
w

pr
oj
ec
t

de
le
te
 p
ro

je
ct

U
nif
y
tea

m
s

A
llo

w
 in
te
ra
ct
io
n

w
ith

 s
ta
ke

ho
ld
er
s

C
us

to
m

ize
 th

e

do
cu

m
en

ta
tio

n

E
as
e

do
cu

m
en

t's

ac
ce
ss

M
an

ag
em

en
t

Pr
oje

ct

m
an

ag
em

en
t

T
ea
m

s

m
an

ag
em

en
t

D
oc

um
en

ts

m
an
ag
em

en
t

R
ep

or
t

st
at
is
tic

s

pr
ov

id
e

is
ol
at
ed

da
tab

as
e

M
an
ua
l

R
ev

isio
n o

f

p
ro

je
ct
s

A
ut
om

ati
c

R
ev

isio
n

of

pr
oj
ec

ts

A
llo

w
 be

tte
r

co
m

m
un

ic
at
io

n

th
ro

ug
h t
he

 w
eb

co
m

po
ne

nt

In
fo

rm
at
io
n

D
isc

us
s a
nd

qu
er
y

N
ot
ify

 te
am

s

P
ro
vi
de

co
ns

ist
en

cy

P
ro
vi
de

sy
nc

hr
on

iz
at
i

on

U
nd

er
st
an

da
bi

li

ty
E
ff
ic
ie
nc

y
E
ff
ec

tiv
en

es
s

R
ec

or
d

co
m

m
en

ts
F
ee

db
ac

k

M
ai
nt
ai
na

bi
lit
y

of
 d

oc
um

en
ts

R
ev

iew
 do

cu
m

en
ts

th
ro
ug

h d
ial
og

 bo
x

A
llo

w
 ty
pi

ng
A

rch
ivi
ng

D
ete

ct c
ha

ng
es

R
eq

uir
em

en
ts

an
al
y
si
s

R
ep

or
t

ge
ne

ra
tio

n

N
on

-fu
nc

tio
na

l

fe
at
ur

es

T
ai

lo
rs

 u
sa

b
ili

ty

o
p
tio

n
s

S
ec

ur
ity

In
te
gr

at
io

n w
ith

so
ftw

ar
e

to
ol

s

W
or

d e
nv

iro
nm

en
t

an
d
im

po
rt
w

iz
ar
d

R
em

ot
e u

sa
ge

 v
ia

w
eb

In
ve

sti
ga

te
 r
ea

so
ns

fo
r c

h
an

g
es

A
ss

ur
e
us

er
 s
ec

ur
ity

L
oc

k d
oc

um
en

ts

R
ed

u
ce

 er
ro

rs
P
ro

v
id

e s
m

o
o
th

w
or

kf
lo

w

A
llo

w
 f
in
di
ng

cu
rr
en

t v
er

si
on

of
do

cu
m

en
t

U
nd

er
st
an

d t
he

co
nt
ex

t

R
eq

ui
sit
eP

ro

pr
ov

id
e

sta
nd

ar
d p

ro
je
ct

tem
pl
ate

sa
ne

d
o
n
't s

av
e

C
on

tro
l

re
qu

ire
m

en
ts

C
re
ate

re
qu

ire
m

en
ts

Ed
it

re
qu

ire
m

en
ts

S
et
 u
p
ne

w

re
qu

ire
m

en
ts

re
lo
ca

te

pr
ev

io
us

re
qu

ire
m

en
ts

D
is
tin

gu
is
h

re
qu

ire
m

en
ts

R
eq

ui
re
m

en
ts

co
ve

ra
ge

an
aly

sis

V
iew

 a
pp
rov

ed

us
e-c

as
e

D
ef
in
e

re
qu

ire
m

en
ts

S
av

e

re
qu

ire
m

en
ts

L
ab

el

te
m

p
o
ra

ri
ly

U
n
iq

u
el

y

id
en

tif
y

V
er

ifi
ca

tio
n

re
qu

ire
m

en
ts

U
pd

at
e

re
qu

ire
m

en
ts

M
od
ify

re
qu

ire
m

en
ts

A
dd

re
qu

ire
m

en
ts

D
ele

te

re
qu

ire
m

en
ts

A
ss
ig
n

at
tr
ib

u
te

s t
o

re
qu

ire
m

en
ts

P
ro

vi
de

re
qu

ire
m

en
ts

ty
pe

P
rio

rit
iz
e

re
qu

ire
m

en
ts

G
iv
e

sta
tu
s

A
sse

ss
risk

M
on

ito
r li
nk

in
g

T
re

ac
ab

ili
ty

S
et

 u
p
 lin

k
s

C
le
ar

ed
 su

sp
ec

t

lin
k
s

A
ut
om

at
ic

se
tti
ng

 t
o

su
sp

ec
t

M
an

ua
l
se

ttin
g

to
su
sp
ec
t

A
ut
om

ati
c

cle
ar
ed

 s
us

pe
ct

link
s

M
an

ua
l cl
ea

re
d

su
sp

ec
t
lin

ks

T
ra
ck

 a
ll
th
e

re
qu

ire
m

en
ts

S
et

re
qu

ire
m

en
ts

re
la
tio

ns
hi

ps

O
rga

niz
e

V
iew

 c
ha

in
 o

f

re
la
tio

ns
hi
ps

Id
en

tify
 h

ig
h

le
v
el

re
qu

ire
m

en
ts

S
o
rt

re
qu

ire
m

en
ts

F
ilt
er

re
qu

ire
m

en
ts

C
ap

tu
re

re
qu

ire
m

en
ts

ch
an

g
es

C
at
eg

or
iz
e

re
qu

ire
m

en
ts

U
nd

ers
tan

d

im
pa

ct
 of

ch
an

g
es

R
ev

iew
 c

ha
ng

es
R
eq

ui
re
m

en
ts

m
ai
nt
ai
na

bi
lit
y

C
las

sif
y

by

ty
pe

s

cl
as

sif
y b

y

st
at

u
s

st
at
us

c
o
st

na
m

e
p
ri
o
ri
ty

st
ab

ili
ty

pr
oj
ec

t re
po

rts
re
qu

ire
m

en
ts

m
et
ric

s
re

po
rt

So
D

A re
po

rt
tre

nd
 an

al
ys

is

re
p
o
rt

Figure 39. RequisitePro Feature Tree.

 107

Management

Project
management

Teams
management

Documents
management

Requirements
analysis

Report
generation

Non-functional
features

Tailors usability
options Security

RequisitePro

Control
requirements Treacability

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 40. High-Level RequisitePro -Subset of the Feature Tree.

Figure 40 shows the subset of RequisitePro representing the three parent features

that will be themselves divided into some other features. The figure shows that these

main high-level are considered mandatory features according to their essential roles.

 108

Project revisionSet up new
project delete project

Project
management

Report
statistics

provide
isolated
database

Manual
Revision of

projects

Automatic
Revision of

projects

provide
standard project

template

Figure 41. Project Management RequisitePro Feature Tree’s Subset.

Figure 41 notes the existence of features showing the possibility allowed by the

tool to set up a new project, or review project, or set up project and review at the same

time. However, there are five optional features (set up new project, project revision,

delete project, manual or automatic revision of projects). The three other features are

mandatory ones.

 109

Unify teams Allow interaction
with stakeholders

Teams
management

Allow better communication
through the web component

Information Discuss and
query Notify teams

Provide
consistency

Provide
synchronizatio

n

Understandabili
ty

Efficiency Effectiveness

Record
comments Feedback

Figure 42. Teams Management RequisitePro Feature Tree’s Subset.

Figure 42 shows the detailed subset of the RequisitePro feature tree illustrating

the essential features generated by the teams’ management feature.

 110

Customize the
documentation

Ease document's
access

Documents
management

Maintainability
of documents

Review documents
through dialog box

Allow typingArchiving Detect changes save don't save

Figure 43. Documents Management RequisitePro Feature Tree’s Subset.

Figure 43 illustrates the detailed subset of the RequisitePro feature tree

representing the essential features generated by the documents’ management feature.

 111

Create
requirements

Set up new
requirements

relocate
previous

requirements

Distinguish
requirements

Requirements
coverage
analysis

View approved
use-case

Define
requirements

Save
requirements

Label
temporarily

Uniquely
identify

status costname priority difficulty stability

Control
requirements

Figure 44. Control Requirements Subset.

Figure 44 shows the detailed subset of the RequisitePro feature tree illustrating

the control requirements essential features generated from the requirement analysis

feature provided by the tool.

 112

Control
requirements

Edit
requirements

Verification
requirements

Update
requirements

Modify
requirements

Add
requirements

Delete
requirements

Assign
attributes to
requirements

Provide
requirements

type

Prioritize
requirements

Give status Assess risk

Figure 45. Control Requirements Subset (Cont).

Figure 45 shows the rest of the detailed subset of the RequisitePro feature tree

illustrating the control requirements essential features gen erated from the requirement

analysis feature provided by the tool.

 113

Report
generation

project reports requirements
metrics report

SoDA report
requisitepro

report static report
trend analysis

report

Figure 46. Report Generation RequisitePro Feature Tree’s Subset.

The detailed subset of the RequisitePro feature tree illustrating the Report

Generation essential features generated from the requirement analysis feature provided by

the tool as shown in Figure 46.

 114

Monitor linking

Treacability

Set up links
Cleared suspect

links

Automatic
setting to

suspect

Manual setting
to suspect

Automatic
cleared suspect

links

Manual cleared
suspect links

Figure 47. Treacability RequisitePro Feature Tree’s Subset.

This tree illustrates the children features of one of the potential features provided

by the requirement management tool (RequisitePro). The tool allows either the

mandatory set up links between the requirements or the mandatory cleared suspect links

or both together. However, the previous actions might be accomplished with an optional

choice (manual or automatic) of one action among two.

 115

Treacability

Track all the
requirements

Set
requirements
relationships

Organize

View chain of
relationships

Identify high
level

requirements

Sort
requirements

Filter
requirements

Capture
requirements

changes

Categorize
requirements

Understand
impact of
changes

Review changes
Requirements

maintainability
Classify by

types
classify by

status

Figure 48. Treacability RequisitePro Feature Tree’s Subset (Cont).

Figure 48 shows the rest of the detailed subset of the RequisitePro feature tree

illustrating the treacability of the requirements feature generated from the requirement

analysis feature provided by the tool.

 116

Non-functional
features

Tailors usability
options

Security

Integration with
software tools

Word environment
and import wizard

Remote usage via
web

Investigate reasons
for changesAssure user security Lock documents

Reduce errors
Provide smooth

workflow

Allow finding
current version

of document

Understand the
context

Figure 49. Non-Functional Features as RequisitePro Feature Tree’s Subset.

Figure 49 illustrates a collection of a non-functional mandatory features provid ed

by the RequisitePro tool.

 117

APPENDIX B. SEATOOLS FEATURE TREE

Appendix B presents the entire feature tree of the Software Engineering

Automation tools (SEATools). This feature tree is presented in detailed subsets. This

feature model defines a hierarchical structure over the set of features of the tool.

Figure 24 shows an entire feature tree representing the essential features of the

software engineering tool for developing prototypes of real-time systems. SEATools is

an integrated collection of tools that are linked together to form a software development

environment.

 118

 m
an

ag
e

pr
ot

ot
yp

e

D
ev

elo
p

sy
st

em
s

A
na

ly
ze

 R
eq

ui
re

m
en

ts
th

ro
ug

h e
vo

lu
tio

na
ry

pr
ot

ot
yp

es

S
up

po
rt

ev
ol

ut
io

na
ry

pr
ot

ot
yp

e

Fe
as

ib
ili

ty

st
u

d
y

pr
og

ra
m

in
g

la
ng

ua
ge

op
er

at
in

g
sy

st
em

co
m

pi
le

r
as

se
m

bl
er

bu
ild

 pr
ot

ot
yp

e

SE
A

 T
oo

ls

di
ffe

re
nt

ia
te

to
ol

s

su
pp

or
t

in
te

gr
at

io
n

of
co

m
pl

ex
 s

ys
te

m
s

as
se

ss
m

en
t

of
 d

es
ig

n

es
se

nt
ia

l
ve

ry
 us

ef
ul

us
ef

ul

co
m

pu
te

r
sy

ste
m

s
lib

ra
rie

s
ed

ito
rs

co
m

pu
te

r
ai

de
d

so
ftw

ar
e

en
gi

ne
er

in
g

ot
he

rs

lib
ra

ry
 o

f
re

us
ed

 co
de

ot
he

r

au
to

m
at

ic
al

ly
ge

ne
ra

te
 c

od
e

so
ft

w
ar

e

ba
se

ex
ec

ut
io

n
su

pp
or

t
sy

ste
m

s

re
w

ri
te

su
bs

ys
te

m
s

m
an

ag
em

en
t

so
ftw

ar
e

de
sig

n
so

ft
w

ar
e

ba
se

de
sig

n

da
ta

ba
se

S
W

 d
at

ab
as

e
de

sig
n

da
ta

ba
se

co
nt

ai
ni

ng
P

S
D

L

tra
ns

la
to

r
sc

he
du

le
r

co
m

pi
le

r

tra
ck

PS
D

L
sp

ec
if
ic

at
io

n
tra

ck
 ex

ec
ut

ed
co

de

dy
na

m
ic

sta
tic

m
od

ify
 e

xi
sti

ng

pr
ot

ot
yp

e

pr
oj

ec
t

co
nt

ro
l

ev
al

ua
tio

n
co

nt
ro

l
sy

st
em

s
m

er
ge

r

co
nf

lic
t

de
te

ct
io

n
w

ar
n

s
cr

ea
te

PS
D

L

de
le

te

ex
ec

ut
e

sy
st

em

tr
an

sl
at

e
sc

he
du

le
co

m
pi

le
ex

ec
ut

e

u
se

r

in
te

rf
ac

e

gr
ap

hi
ca

l
ed

ito
r

ex
pe

rt
sy

ste
m

-
de

sig
n

m
od

e-
de

bu
gg

er
br

ow
se

r

al
lo

w
s

co
m

m
un

ica
tio

n

co
ntr

ol

co
m

m
un

ica
tio

n

pr
ot

ot
yp

e
ed

it
he

lp

 n
ew

qu
it

co
m

m
it

w
o

rk

re
tri

ev
e

fro
m

da
ta

ba
se

ch
oo

se
PS

D
L

ch
an

g
e

in
te

rf
ac

e
re

qu
ire

m
en

ts
ad

a
C

ap
s

de
fa

ul
t

ha
rd

w
ar

e

m
od

el

cr
ea

te
m

od
ify

fin
d

re
tri

ev
e

cr
ea

te

gr
ap

hi
ca

l
d

es
ig

n

ed
it g

ra
ph

ic
al

de
sig

n
vi

ew
 gr

ap
hi

ca
l

de
si

gn
vi

ew
 co

de
ed

it
co

de

A
da

SD
E

O
T

H
E

R
 T

E
X

T
E

D
IT

O
R

Vi
E

m
ac

s

m
od

el
 e

di
to

r

de
si

gn
er

co
ns

tru
ct

m
od

ifi
ca

tio
n

m
od

ify
cr

ea
te

gr
ap

hi
ca

l
ob

je
ct

s
(d

at
a

flo
w

 d
ia

gr
am

)

tex
tu

al

ob
je

ct
s

ex
ist

in
g

da
ta

flo
w

 d
ia

gr
am

s

co
m

pu
ta

tio
n

al
 gr

ap
hs

us
er

in
te

ra
ct

io
n

of
 t

he

pr
op

os
ed

 s
ys

te
m

 w
ith

its
 en

vi
ro

nm
en

t

co
ns

tr
ai

nt
s

op
er

at
or

s
st

re
am

s
te

rm
in

at
or

co
nt

ro
l

co
ns

tr
ai

nt
s

tim
in

g
co

ns
tr

ai
nt

s

ad
d

R
ef

in
e s

ys
te

m
s

Figure 50. SEATools’s Feature Tree.

 119

 manage
prototype

build prototype

SEATools

user interface

.

.

.

.

.

.

.

.

.

Figure 51. High-Level SEATools’ -Subset of the Feature Tree.

Figure 51 shows the subset of SEAtools representing the three parent features that

will be themselves divided into other features. The figure shows that these main high -

level features are considered mandatory features according to their essential roles.

 120

 manage
prototype

Develop systems by
supporting

evolutionary prototype

Analyze Requirements
through evolutionary

prototypes

interaction of the
proposed system with

its environment
constraints

.

.

.

.

.

.

Figure 52. Manage Prototype Feature Tree’s Subset.

Figure 52 notes the existence of features showing the possibility allowed by the

tool to develop prototype or analyze requirements through the evolutionary prototype or

both functionalities at the same time. The four features are manda tory and also divided to

some other low level features.

 121

Feasibility
study

differentiate
SEA Tools

Components

support
integration of

complex systems

assessment
of design

essential very useful useful

computer aided
software

engineering
others

Develop
systems

.

.

.

.

.

.

Figure 53. Develop Systems Feature Tree’s Subset.

Figure 53 shows the features derived from the parent feature “develop systems”.

These features are further differentiated by three categories: essential, very useful, and

useful. As an illustration, compilers, operating systems, assemblers, and programming

languages are essential tools or features. Editors and libraries are very useful tools or

features.

 122

programing
language

operating
systemcompiler assembler

essential

Computer
Systems

Figure 54. Essential Feature Tree’s Subset.

Figure 54 shows the subset “essential” of the develop systems’ feature tree. It

shows the four mandatory features or tools of the SEATools: Compilers, operating

systems, assemblers, and programming languages.

 123

very useful

libraries editors

library of
reused code other

Figure 55. Very Useful Feature Tree’s Subset.

The subset “very useful” of the develop systems’ feature tree shows the two

mandatory features or tools of the SEATools: Libraries, and editors. Meanwhile, the

library feature is further divided into two mandatory features: library of reused code and

other libraries.

 124

project
control

evaluation
control systems merge

conflict
detection

warns create PSDL

Develop
systems

Figure 56. Develop Systems Feature Tree’s Subset (Con’t.)

Figure 56 shows another branch from the features derived from the parent

“develop systems”. The diagram shows the essential features tailored to project control.

As it is shown in the graph, these features are mandatory and essential.

 125

build prototype

automatically
generate code

modify existing
prototype

delete

model
editor

add Refine systems

.

.

.

.

.

.

Figure 57. Build Prototype Feature Tree’s Subset.

Figure 57 shows the features derived from the parent “build prototype”. The

diagram shows the essential features tailored to build a prototype for a software project.

As it is shown in the graph, these features are mandatory and essential.

 126

automatically
generate code

software
base

rewrite
subsystems

management
software design

software
base

design
database

SW database
design database

containing
PSDL

track PSDL
specification

track executed
code

Figure 58. Automatically Generate Code Feature Tree’s Subset.

Figure 58 shows the features derived from the parent “build prototype”. This

shows the essential features tailored to automatically generate code. As it is shown in the

figure, only two features are optional to use to automatically generate code.

 127

automatically
generate code

execution
support
systems

translator scheduler compiler
execute
system

translate schedule compile execute

Figure 59. Automatically Generate Code Feature Tree’s Subset (Cont).

Figure 59 is another part of the features generated from “automatically generate

code”.

 128

model
editor

designer

construct modification

modify create

graphical
objects (data
flow diagram)

textual
objects

existing data
flow diagrams

computation
al graphs

user

operators streams
control

constraints
timing

constraints

terminator

Figure 60. Model Editor Feature Tree’s Subset.

Figure 60 shows the features derived from the parent “build prototype”. The

diagram shows the essential features tailored to “model editor.”

 129

user
interface

graphical
editor

expert
system- design

mode-
debugger browser

allows
communication

control
communication

prototype edithelp

.

.

.

.

.

.

Figure 61. User Interface Feature Tree’s Subset.

Figure 61 shows the features of the third high-level feature of the SEATools (user

interface). It shows the essential features derived from the parent.

 130

prototype

 new quit commit
work

retrieve from
database

choose

create find retrieve modify

Figure 62. Prototype Feature Tree’s Subset.

Figure 62 shows the essential features that may be used when working with

prototypes. SEATools allows the choice of prototypes, the creation of prototypes, the

modification, and the retrieve of prototypes.

 131

edit

PSDL change interface requirements ada Caps
default

hardware
model

create
graphical

design

edit graphical
design

view graphical
design view code edit code

Ada SDE OTHER TEXT
EDITOR

Vi Emacs

Figure 63. Edit Feature Tree’s Subset.

Figure 63 illustrates the different features derived from the feature “edit”. These

features are all (by chance) “mandatory-features”. Notice that the user has the ability to

"edit" numerous artifacts with SEATools as shown in the second level of this diagram. In

the fourth level, the feature “other text editor” is divided into two mandatory features, but

their choice is alternative.

 132

THIS PAGE INTENTIONALLY LEFT BLANK

 133

APPENDIX C. CLASS HIERARCHY FOR ONTOLOGY-
REQUISITEPRO PROJECT

In this Appendix we illustrate a selective subset of the RequisitePro ontology

generated by Protégé-2000. This appendix starts by introducing all the classes that exist

in the RequisitePro ontology in class hierarchy tree. This hierarchy is automatically

generated by Protégé-2000. Following the hierarchy is a Protégé generated print-out of

the specifics of the important classes that we judged most useful to our interoperability

ontology. These classes are: Application, Projects, Project, Requirements, Requirement,

AttrValues, AttrValue, Relationships, Relationship, Documents and Document.

 134

o Application
§ Projects

§ Project
§ RootPackage

§ iPackageable
§ Package

§ iPackage
§ Requirements

§ Revisions
§ Revision

§ Requirement
§ AttrValues

§ AttrValue
§ ListItemValues

• ListItemValue

§ Revisions
§ Revision

§ Relationships
§ Relationship

§ Discussions
§ Discussion

§ Responses
§ Response

§ DiscussionLinks
§ RelatedProjectContexts

§ RelatedProjectContext
§ Documents

§ Document
§ Reports

§ Queries
§ Query

§ Views
§ View

§ RequirementBucket
§ Groups

§ Group
§ Permissions

§ Permission
§ Users

§ User
§ DocTypes

§ DocType
§ ReqTypes

§ ReqType
§ Attrs

§ Attr
§ ListItems

• ListItem

§ GUI
§ Errors

 135

§ ServerInformation
§ Catalog

§ CatalogItem
o Properties

§ Property
o ReqProCollection
o Connector
o Context
o CustomType
o CustomTypes
o EMail
o RoseItem
o RoseItems

CLASS APPLICATION
Template Slots

Slot name Documentation Ty pe Cardinality

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String) Member
of ReqPro40.Application

Any 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As String
Member of ReqPro40.Application Locks a specific
open project.

String 0:1

ProjectLockCount

Property ProjectLockCount(vProjLoo kupValue,
[eProjLookuptype As enumProjectLookups]) As Long
read-only Member of ReqPro40.Application Returns
the number of ouststanding locks on a project object.

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines whether
the server is running

Boolean 0:1

PublishAction

Sub PublishAction(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the local
Catalog object

String 0:1

Version
Property Version As String read-only Member of
ReqPro40.Application Returns the version of the
application

String 0:1

 136

Template Slots

Slot name Documentation Ty pe Cardinality

oCustomTypes
Property CustomTypes As CustomTypes read-only
Member of ReqPro40.Application Reserved for future
use.

String 0:1

CompareVersionNumber
Function CompareVersionNumber(sNumber1 As String,
sNumber2 As String) Member of
ReqPro40.Application Compares version numbers

String 0:1

VersionRev
Property VersionRev As Long read-only Member of
ReqPro40.Application Returns the version revision
number

String 0:1

VersionMajor
Property VersionMajor As Long read-only Member
of ReqPro40.Application Returns the major version
number of the application

String 0:1

VersionMinor
Property VersionMinor As Long read-only Member
of ReqPro40.Application Returns the minor version
number of the application

String 0:1

OpenProjectProperties

unction OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member of
ReqPro40.Application Opens a RequisitePro project
and returns its properties

String 0:1

PersonalCatalogItem

Property PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog collection

String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific project
has any outstanding locks.

Boolean 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool As
String, sItem As String, sOperation As String, sQuery
As String) Member of ReqPro40.Application
Launches Rational Extended Help

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a specific
project.

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-only
Member of ReqPro40.Application Boolean 0:1

CloseServer
Sub CloseServer() Member of ReqPro40.Application
Reserved Any 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean Member of
ReqPro40.Application Returns or sets whether the Boolean 0:1

 137

Template Slots

Slot name Documentation Ty pe Cardinality

server raises server events

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As String)
As Properties Member of ReqPro40.Application String 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqP ro40.Application Returns whether the
supplied GUID represents a valid lock.

String 0:1

CLASS PROJECTS
Template Slots

Slot name Documentation Type Cardinality

VersionMinor
Property VersionMinor As Long read-only Member
of ReqPro40.Application Returns the minor version
number of the application

String 0:1

CloseServer
Sub CloseServer() Member of ReqPro40.Application
Reserved Any 0:1

VersionRev
Property VersionRev As Long read-only Member of
ReqPro40.Application Returns the version revision
number

String 0:1

CompareVersionNumber
Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version numbers

String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the local
Catalog object

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As Long
read-only Member of ReqPro40.Application Returns
the number of ouststanding locks on a project object.

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a specific
project.

String 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIde ntifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

 138

Template Slots

Slot name Documentation Type Cardinality

PublishAction

Sub PublishAction(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

OpenProjectProperties

unction OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member of
ReqPro40.Application Opens a RequisitePro project
and returns its properties

String 0:1

Item

Property Item(vViewLookupValue, [eViewLookupType
As enumViewLookups = eViewLookup_Key]) As View
read-only Default member of ReqPro40.Views
Returns the specified View

Any 0:1

VersionMajor
Property VersionMajor As Long read-only Member
of ReqPro40.Application Returns the major version
number of the application

String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific project
has any outstanding locks.

Boolean 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As String
Member of ReqPro40.Application Locks a specific
open project.

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-only
Member of ReqPro40.Application Boolean 0:1

Count
Property Count As Long read-only Member of
ReqPro40.Views Returns the number of View objects
in the collection

Any 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As String)
As Properties Member of ReqPro40.Application

String 0:1

PersonalCatalogItem

Property PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog collection

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean Member of
ReqPro40.Application Returns or sets whether the
server raises server events

Boolean 0:1

IsModified Property IsModified As Boolean read-only Member Boolean 0:1

 139

Template Slots

Slot name Documentation Type Cardinality

of ReqPro40.Views Returns whether any of the Views
in the collection have been modified

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

Version
Property Version As String read-only Member of
ReqPro40.Application Returns the version of the
application

String 0:1

oCustomTypes
Property CustomTypes As CustomT ypes read-only
Member of ReqPro40.Application Reserved for future
use.

String 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects to their
state when originally created

Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views Save all
Views that have changed to the database Any 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns whether
the supplied GUID represents a valid lock.

String 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool As
String, sItem As String, sOperation As String, sQuery
As String) Member of ReqPro40.Application
Launches Rational Extended Help

String 0:1

CLASS PROJECT
Template Slots

Slot name Documentation Type Cardinality

PermissionsForReqName
Property PermissionsForReqName(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sItem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

ChangeLoggedInUser
Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups = Boolean 0:1

 140

Template Slots

Slot name Documentation Type Cardinality

eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns the
version revision number

String 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

Save
Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database

Any 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Retur ns the count
of records returned by a query.

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key is
an incrementing number assigned as a project is
opened.

String 0:1

LockCount
Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the group
of the current user

String 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

 141

Template Slots

Slot name Documentation Type Cardinality

IsInDB

Property IsInDB(lKey As Long, eInterfaceID As
enumInterfaceIdentifiers, [sVersionNumber As
String]) As Boolean read-only Member of
ReqPro40.Project Returns whether the specified
object is in the database

Boolean 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific
project has any outstanding locks.

Boolean 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns the
version of the application

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opend the project
read only

Boolean 0:1

CloseServer Sub CloseServer() Member of Any 0:1

 142

Template Slots

Slot name Documentation Type Cardinality

ReqPro40.Application Reserved

IsOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Applicat ion Returns the
local Catalog object

String 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns the
major version number of the application

String 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage Member
of ReqPro40.Project

String 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups = eReqLookup_Key],
[eWeight As enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog
collection

String 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers,
sGUID As String, vEventData, eEventDataType
As enumEventDataTypes, eEventSubType As

Any 0:1

 143

Template Slots

Slot name Documentation Type Cardinality

enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns the
minor version number of the application

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application Boolean 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

PermissionsForReqType

Property PermissionsForReqType(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

SecurityEnabled
Property SecurityEnabled As Boolean Member
of ReqPro40.Project Retur ns or sets whether
security is enabled for the project

Boolean 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Pro ject Retrieves current security
information from the database

String 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a

String 0:1

 144

Template Slots

Slot name Documentation Type Cardinality

specific project.

PermissionsForDocType

Property PermissionsForDocType(lDocTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

GetRequirements

Function GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of ReqPro40.Project

String 0:1

PermissionsForReqText
Property PermissionsForReqText(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-only
Member of ReqPro40.Project Returns the
database schema version number

String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

GetDiscussionItem Function GetDiscussionItem(lKey As Long) As String 0:1

 145

Template Slots

Slot name Documentation Type Cardinality

Object Member of ReqPro40.Project Returns
the specified discussion or response

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project

String 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's
permissions for editing the ListItemValue of the
ListItem type (data).

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

IsValidLock
Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only

String 0:1

 146

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

CLASS REQUIREMENTS
Template Slots

Slot name Documentation Type Cardinality

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of ReqPro40.Project

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

Item

Property Item(vViewLookupValue ,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the count
of records returned by a query.

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application

Boolean 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-only
Member of ReqPro40.Project Returns the
database schema version number

String 0:1

 147

Template Slots

Slot name Documentation Type Cardinality

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog
collection

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage Member
of ReqPro40.Project

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String 0:1

PermissionsForDocType

Property PermissionsForDocType(lDocTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

PermissionsForReqText
Property PermissionsForReqText(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns the
version of the application

String 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers,
sGUID As String, vEventData, eEventDataT ype
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

 148

Template Slots

Slot name Documentation Type Cardinality

GetRequirements

Function GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

SecurityEnabled
Property SecurityEnabled As Boolean Member
of ReqPro40.Project Returns or sets whether
security is enabled for the project

Boolean 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns the
version revision number

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opend the project
read only

Boolean 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sItem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String 0:1

ChangeLoggedInUser
Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean

Boolean 0:1

 149

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Changes the user
logged into the project.

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String 0:1

Save
Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database Any 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean 0:1

LockCount
Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups = eReqLookup_Key],
[eWeight As enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the
local Catalog object

String 0:1

PermissionsForReqType

Property PermissionsForReqType(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

IsInDB
Property IsInDB(lKey As Long, eInterfaceID As
enumInterfaceIdentifiers, [sVersionNumber As Boolean 0:1

 150

Template Slots

Slot name Documentation Type Cardinality

String]) As Boolean read-only Member of
ReqPro40.Project Returns whether the specified
object is in the database

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns the
minor version number of the application

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

PermissionsForReqName
Property PermissionsForReqName(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's
permissions for editing the ListItemValue of the
ListItem type (data).

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns the
major version number of the application

String 0:1

 151

Template Slots

Slot name Documentation Type Cardinality

DBProperties
Property DBP roperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

QueryValidate

Function QueryValidate(eQueryBaseT ype As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key is
an incrementing number assigned as a project is
opened.

String 0:1

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password String 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String 0:1

 152

Template Slots

Slot name Documentation Type Cardinality

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific
project has any outstanding locks.

Boolean 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Membe r of
ReqPro40.Application

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the group
of the current user

String 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

CLASS REQUIREMENT
Template Slots

Slot name Documentation Type Cardinality

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application Boolean 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns the
major version number of the application

String 0:1

 153

Template Slots

Slot name Documentation Type Cardinality

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayT ype As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display a requirement dialog of the mode and
type received.

String 0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups
= eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the specified
traced from object

String 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups
= eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the specified
child of this requirement

String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

Bookmark

Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns the
bookmark associated with this requirement (if
any)

String 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all of
the objects from which this requirement traces

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns the
version of the application

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String 0:1

LockCount
Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String 0:1

 154

Template Slots

Slot name Documentation Type Cardinality

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

DocKey

Property DocKey As Long read-only
Member of ReqPro40.Requirement Returns the
key for the Document object associated with this
requirement (if any)

String 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the count
of records returned by a query.

String 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String 0:1

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the currently
logged in user. The ReqType, ReqTraceability
and ReqText permission types are valid types for
this interface

Boolean 0:1

IsOpenedExclusive

Property IsOpenedE xclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

TracesTo

Property TracesTo As Relationships read-only
Member of ReqPro40.Requirement Returns a
Relationship object for the specified traces to
object

String 0:1

PermissionsForReqType
Property PermissionsForReqType(lReqTypeKey
As Long) As enumPermissions read-only

String 0:1

 155

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

PermissionsForReqName
Property PermissionsForReqName(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the
local Catalog object

String 0:1

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns the
minor version number of the application

String 0:1

IsNew
Property IsNew As Boolean read-only
Member of ReqPro40.Requirement Indicates if
the requirement is not new.

Boolean 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID As
enumInterfaceIdentifiers, [sVersionNumber As
String]) As Boolean read-only Member of
ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of ReqPro40.Project

String 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =

String 0:1

 156

Template Slots

Slot name Documentation Type Cardinality

eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.P roject

SecurityEnabled
Property SecurityEnabled As Boolean Member
of ReqPro40.Project Returns or sets whether
security is enabled for the project

Boolean 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

Boolean 0:1

Text
Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String 0:1

Children

Property Children As Relationships read-only
Member of ReqPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the da tabase

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns the
version revision number

String 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opend the project
read only

Boolean 0:1

SuspectDateTime Property SuspectDateTime As String read-only String 0:1

 157

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Requirement

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key is
an incrementing number assigned as a project is
opened.

String 0:1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],
[vNewParentLookupValue],
[vNewParentLookupType As
enumRequirementLookups = eReqLookup_Key])
Member of ReqPro40.Requirement Deletes a
requirement from the project and provides
options for dealing with hierarchical children.

String 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's
permissions for editing the ListItemValue of the
ListItem type (data).

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project

Boolean 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sItem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String 0:1

Level
Property Level As Long read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

IsRoot
Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean 0:1

 158

Template Slots

Slot name Documentation Type Cardinality

HasParent

Property HasParent([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has a parent

Boolean 0:1

DBState
Property DBState As String read-only
Member of ReqPro40.Requirement Returns the
state of the object in the underlying datasource.

String 0:1

GetRequirements

Function GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers,
sGUID As String, vEventData, eEventDataType
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific
project has any outstanding locks.

Boolean 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

GetDiscussions

Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns the
Discussions object associated with this
requirement

String 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups = eReqLookup_Key],
[eWeight As enumRequirementsWeights =
eReqWeight_Medium], [eFlags As

String 0:1

 159

Template Slots

Slot name Documentation Type Cardinality

enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog
collection

String 0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently logged
in user for the permission type specified. The
ReqType, ReqTraceability and ReqText
permission types are valid types for this interface.

String 0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups
= eRelLookup_DerivedK ey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all of
the objects to which this requirement traces

String 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database Any 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

 160

Template Slots

Slot name Documentation Type Cardinality

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage Member
of ReqPro40.Project

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

AssignParent

Function AssignParent(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups = eReqLookup_Key])
As Requirement Member of
ReqPro40.Requirement Changes the
requirement's parent or sets the it to the root
level.

String 0:1

HasTracesFrom

Property HasTracesFrom([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

PermissionsForReqText
Property PermissionsForReqText(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

NextVersionNumber

Property NextVersionNumber As String read-
only Member of ReqPro40.Requirement
Returns the next sequential version number for
this requirement

String 0:1

HasTracesTo

Property HasTracesTo([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other requirements.
Optionally returns the number of these traces.

Boolean 0:1

DropObjects
Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from

String 0:1

 161

Template Slots

Slot name Documentation Type Cardinality

the Project object

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

DocPosition
Property DocPosition As Long read-only
Member of ReqPro40.Requirement Returns the
posit ion of the requirement within the document.

String 0:1

Tag

Property Tag([eTagFormat As enumTagFormat =
eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns the
tag for this requirement

String 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

PermissionsForDocType

Property PermissionsForDocType(lDocTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

WeightName
Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

Revert
Sub Revert([bRevertAll As Bo olean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

IsDocBased
Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a do cument

Boolean 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIde ntifiers, sGUID As String,
vEventData, eEventDataType As

String 0:1

 162

Template Slots

Slot name Documentation Type Cardinality

enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

CLASS ATTRVALUES
Template Slots

Slot name Documentation Type Cardinality

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of ReqPro40.Project

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application

Boolean 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

 163

Template Slots

Slot name Documentation Type Cardinality

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String 0:1

AssignParent

Function AssignParent(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key]) As Requirement Member
of ReqPro40.Requirement Changes the
requirement's parent or sets the it to the root
level.

String 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String 0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage
Member of ReqPro40.Project

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and ret urns its properties

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String 0:1

PermissionsForDocType

Property
PermissionsForDocType(lDocTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the

String 0:1

 164

Template Slots

Slot name Documentation Type Cardinality

current user's permissions for editing the
Documents of the Document type (data).

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

PermissionsForReqText

Property
PermissionsForReqText(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String 0:1

IsNew
Property IsNew As Boolean read-only
Member of ReqPro40.Requirement Indicates
if the requirement is not new.

Boolean 0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

Level
Property Level As Long read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String 0:1

DocPosition

Property DocPosition As Long read-only
Member of ReqPro40.Requirement Returns
the position of the requirement within the
document.

String 0:1

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns
the tag for this requirement

String 0:1

GetRequirements

Function
GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

SecurityEnabled Property SecurityEnabled As Boolean Boolean 0:1

 165

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns
the version revision number

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String,
sSubTool As String, sItem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String 0:1

SuspectDateTime
Property SuspectDateTime As String read-
only Member of ReqPro40.Requirement String 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the
user logged into the project.

Boolean 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String 0:1

Save
Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the
database

Any 0:1

 166

Template Slots

Slot name Documentation Type Cardinality

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String 0:1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],
[vNewParentLookupValue],
[vNewParentLookupType As
enumRequirementLookups =
eReqLookup_Key]) Member of
ReqPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns
whether the current user has the project open

Boolean 0:1

IsDocBased
Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean 0:1

HasTracesTo

Property HasTracesTo([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

LockCount

Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String 0:1

Text
Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

 167

Template Slots

Slot name Documentation Type Cardinality

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

HasTracesFrom

Property HasTracesFrom([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String 0:1

NextVersionNumber

Property NextVersionNumber As String read-
only Member of ReqPro40.Requirement
Returns the next sequential version number for
this requirement

String 0:1

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String 0:1

IsRoot
Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean 0:1

PermissionsForReqType

Property
PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID
As enumInterfaceIdentifiers, [sVersionNumber
As String]) As Boolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

WeightName
Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String 0:1

DocKey

Property DocKey As Long read-only
Member of ReqPro40.Requirement Returns
the key for the Document object associated
with this requirement (if any)

String 0:1

 168

Template Slots

Slot name Documentation Type Cardinality

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
are valid types for this interface

Boolean 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

PermissionsForReqName

Property
PermissionsForReqName(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListItemValue of the ListItem type (data).

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

 169

Template Slots

Slot name Documentation Type Cardinality

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Applicatio n Returns
the major version number of the application

String 0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
this interface.

String 0:1

DBState

Property DBState As String read-only
Member of ReqPro40.Requirement Returns
the state of the object in the underlying
datasource.

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects to which this requirement traces

String 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assign ed as a project
is opened.

String 0:1

 170

Template Slots

Slot name Documentation Type Cardinality

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default
password

String 0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String 0:1

HasParent

Proper ty HasParent([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has a parent

Boolean 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to t heir state when originally created

Boolean 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

UnlockProject

Sub UnlockProject(sGUID A s String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Boolean read-only Member of
ReqPro40.Application Determines if a
specific project has any outstanding locks.

Boolean 0:1

ProjectLockCount

Property
ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Long read-only Member of
ReqPro40.Application Returns the number of

String 0:1

 171

Template Slots

Slot name Documentation Type Cardinality

ouststanding locks on a project object.

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

TracesTo

Property TracesTo As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationship object for the specified
traces to object

String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

Children

Property Children As Relationships read-only
Member of ReqPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String 0:1

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display a requirement dialog of the mode and
type received.

String 0:1

Bookmark

Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns
the bookmark associated with this requirement
(if any)

String 0:1

GetDiscussions

Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns
the Discussions object associated with this
requirement

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application
Determines whether the server is running

Boolean 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

CLASS ATTRVALUE
Template Slots

Slot name Documentation Type Cardinality

LogRelationshipRevisions Property LogRelationshipRevisions As Boolean Boolean 0:1

 172

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application Boolean 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

Key
Property Key As Long read-only Member
of ReqPro40.View Returns the unique key
associated with this view

Any 0:1

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String 0:1

DocKey

Property DocKey As Long read-only
Member of ReqPro40.Requirement Returns
the key for the Document object associated
with this requirement (if any)

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

 173

Template Slots

Slot name Documentation Type Cardinality

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns
the major version number of the application

String 0:1

AssignParent

Function AssignParent(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key]) As Requirement Member
of ReqPro40.Requirement Changes the
requirement's parent or sets the it to the root
level.

String 0:1

IsPermitted

Property IsPermitted(ePermissions As
enumPermissions) As Boolean read-only
Member of ReqPro40.View Returns whether
the current user has the specified permissions

Boolean 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns
whether the current user has the project open

Boolean 0:1

IsEdit
Property IsEdit As Boolean read-only
Member of ReqPro40.Attr Returns whether
the attribute is editable (not list or multiselect)

Boolean 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Boolean read-only Member of
ReqPro40.Application Determines if a
specific project has any outstanding locks.

Boolean 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

ReqTypeKey

Property ReqTypeKey As Long read-only
Member of ReqPro40.Requirement Returns
the key for the ReqType object associated with
this requirement

String 0:1

PermissionsForListItemType Property String 0:1

 174

Template Slots

Slot name Documentation Type Cardinality

PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListItemValue of the ListItem type (data).

HasTracesFrom

Property HasTracesFrom([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

IsDocBased
Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean 0:1

DocPosition

Property DocPosition As Long read-only
Member of ReqPro40.Requirement Returns
the position of the requirement within the
document.

String 0:1

Bookmark

Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns
the bookmark associated with this requirement
(if any)

String 0:1

GetCustomValue

Function GetCustomValue([hWnd As Long],
[lTop As Long], [lLeft As Long],
[sCurrentDisplayValue As String]) As Long
Member of ReqPro40.AttrValue Reserved for
future use.

String 0:1

Text
Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String 0:1

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns
the tag for this requirement

String 0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As

Any 0:1

 175

Template Slots

Slot name Documentation Type Cardinality

enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

WeightName
Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the
user logged into the project.

Boolean 0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects to which this requirement traces

String 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue ,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

 176

Template Slots

Slot name Documentation Type Cardinality

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],
[vNewParentLookupValue],
[vNewParentLookupType As
enumRequirementLookups =
eReqLookup_Key]) Member of
ReqPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

DataTypeName

Property DataTypeName As String read-only
Member of ReqPro40.ListItemValue Returns
the text for the data type of the attribute
associated with the list item value

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Pro ject is locked.

Boolean 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default
password

String 0:1

PermissionsForReqText

Property
PermissionsForReqText(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID
As enumInterfaceIdentifiers, [sVersionNumber
As String]) As Boolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

ProjectLockCount

Property
ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

NextVersionNu mber

Property NextVersionNumber As String read-
only Member of ReqPro40.Requirement
Returns the next sequential version number for
this requirement

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

GetPackage
Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package

String 0:1

 177

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project

SuspectDateTime
Property SuspectDateTime As String read-
only Member of ReqPro40.Requirement String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String 0:1

ResetAllListItemValues

Sub ResetAllListItemValues(bSelected As
Boolean) Member of ReqPro40.AttrValue
Selects or deselects all list item values. If the
current user doesn't have update permissions
for any list item values, then none of the list
item values will be reset.

Boolean 0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
this interface.

String 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage
Member of ReqPro40.Project

String 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns
the version revision number

String 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqP ro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

LastOpenedDateTime
Property LastOpenedDateTime As String
read-only Member of ReqPro40.CatalogItem String 0:1

TracesTo

Property TracesTo As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationship object for the specified
traces to object

String 0:1

 178

Template Slots

Slot name Documentation Type Cardinality

PermissionsForDocType

Property
PermissionsForDocType(lDocTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

Level
Property Level As Long read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String 0:1

Rank
 read-only Member of
ReqPro40.ListItemValue Returns the rank of
the list item associated with this list item value

String 0:1

Label
Property Label As String Member of
ReqPro40.Attr Returns or sets the attribute's
label value

String 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String,
sSubTool As String, sItem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String 0:1

ValidPackage_
Function Vali dPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

Children

Property Children As Relationships read-only
Member of ReqPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String 0:1

GetDiscussions

Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns
the Discussions object associated with this
requirement

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a

String 0:1

 179

Template Slots

Slot name Documentation Type Cardinality

RequisitePro project and returns its properties

LockCount

Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String 0:1

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

SecurityEnabled
Property SecurityEnabled As Boolean
Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

Boolean 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

PermissionsForReqType

Property
PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String 0:1

DBState

Property DBState As String read-only
Member of ReqPro40.Requirement Returns
the state of the object in the underlying
datasource.

String 0:1

DataType Property DataType As enumAttrDataTypes String 0:1

 180

Template Slots

Slot name Documentation Type Cardinality

read-only Member of
ReqPro40.ListItemValue Returns the data
type of the attribute associated with the list item
value

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String 0:1

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
are valid types for this interface

Boolean 0:1

HasParent

Property HasParent([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has a parent

Boolean 0:1

PermissionsForReqName

Property
PermissionsForReqName(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

GetRequirements
Function
GetRequirements(vReqsLookupValue,
[eReqsLookupType As

String 0:1

 181

Template Slots

Slot name Documentation Type Cardinality

enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

Child

Property Child(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String 0:1

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean 0:1

HasTracesTo

Property HasTracesTo([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String 0:1

IsAutoSuspect

Property IsAutoSuspect As Boolean read-
only Member of ReqPro40.AttrValue
Returns whether changes to the attribute value
will cause traceability relations to be suspect

Boolean 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

 182

Template Slots

Slot name Documentation Type Cardinality

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String 0:1

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display a requirement dialog of the mode and
type received.

String 0:1

IsNew
Property IsNew As Boolean read-only
Member of ReqPro40.Requirement Indicates
if the requirement is not new.

Boolean 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String 0:1

IsRoot
Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the
database

Any 0:1

SelectedListItemValue

Property SelectedListItemValue As
ListItemValue read-only Member of
ReqPro40.AttrValue Returns the list item that
is selected

String 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application
Determines whether the server is running

Boolean 0:1

CLASS RELATIONSHIPS
Template Slots

Slot name Documentation Type Cardinality

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

 183

Template Slots

Slot name Documentation Type Cardinality

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns
the tag for this requirement

String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

GetCurrentRelationship

Function GetCurrentRelationship() As
Relationship Member of
ReqPro40.Relationships Returns the
Relationship object at the current cursor
position

String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String 0:1

Refresh Sub Refresh() Member of ReqPro40.Vi ew Any 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListItemValue of the ListItem type (data).

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID
As enumInterfaceIdentifiers, [sVersionNumber
As String]) As Boolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

 184

Template Slots

Slot name Documentation Type Cardinality

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

AuthorID
Property Aut horID As Long read-only
Member of ReqPro40.Project

String 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

LockCount

Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean 0:1

MoveFirst
Sub MoveFirst() Member of ReqPro40.Views
Sets the current position in the collection to the
first item

Any 0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement

String 0:1

 185

Template Slots

Slot name Documentation Type Cardinality

Returns a Relationships object representing all
of the objects to which this requirement traces

MoveLast
Sub MoveLast() Member of ReqPro40.Views
Sets the current position in the collection to the
last item

Any 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String 0:1

PermissionsForReqText

Property
PermissionsForReqText(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

ItemCurrent
Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returns the
Document associated with the current item

Any 0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String 0:1

SecurityEnabled
Property SecurityEnabled As Boolean
Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

Boolean 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns String 0:1

 186

Template Slots

Slot name Documentation Type Cardinality

the version of the application

NextVersionNumber

Property NextVersionNumber As String read-
only Member of ReqPro40.Requirement
Returns the next sequential version number for
this requirement

String 0:1

MovePrevious
Sub MovePrevious() Member of
ReqPro40.Views Set the current position in
the collection to the previous item

Any 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

PermissionsForReqType

Property
PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (da ta).

String 0:1

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of ReqPro40.Project

String 0:1

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display a requirement dialog of the mode and
type received.

String 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default
password

String 0:1

 187

Template Slots

Slot name Documentation Type Cardinality

IsRoot
Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean 0:1

IsDocBased
Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean 0:1

DBState

Property DBState As String read-only
Member of ReqPro40.Requirement Returns
the state of the object in the underlying
datasource.

String 0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupTyp e As
enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String 0:1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],
[vNewParentLookupValue],
[vNewParentLookupType As
enumRequirementLookups =
eReqLookup_Key]) Member of
ReqPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String 0:1

HasParent

Property HasParent([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has a parent

Boolean 0:1

Bookmark

Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns
the bookmark associated with this requirement
(if any)

String 0:1

Delete

Sub Delete(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) Member of
ReqPro40.Views Deletes the specified view
from the project

Any 0:1

HasTracesTo

Property HasTracesTo([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other
requirements. Optionally ret urns the number of
these traces.

Boolean 0:1

 188

Template Slots

Slot name Documentation Type Cardinality

HasTracesFrom

Property HasTracesFrom([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
these traces.

Boolean 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns
the major version number of the application

String 0:1

PermissionsForReqName

Property
PermissionsForReqName(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

IsEOF
Property IsEOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the end of the collection has been reached

Boolean 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the
database

Any 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
are valid types for this interface

Boolean 0:1

 189

Template Slots

Slot name Documentation Type Cardinality

IsInKeyset

Property IsInKeyset(lKey As Long) As
Boolean read-only Member of
ReqPro40.Views Returns whether the
specified key is in the collection

Boolean 0:1

Suspect
Property Suspect As Boolean Member of
ReqPro40.Relationships Sets all Relationship
objects in the collection to suspect

Boolean 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisiteP ro project and returns its properties

String 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumVi ewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

RelationshipType

Property RelationshipType As
enumRelationshipTypes read-only Member
of ReqPro40.Relationships Returns an
enumerated value indicating the type of the
Relationship objects in this collection

String 0:1

ProjectLockCount

Property
ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Long read-only Member of
ReqPro40.Applicatio n Returns the number of
ouststanding locks on a project object.

String 0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns
whether the current user has the project open

Boolean 0:1

CreateRequirement
Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As

String 0:1

 190

Template Slots

Slot name Documentation Type Cardinality

enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

GetRequirements

Function
GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

WeightName
Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String 0:1

IsBOF
Property IsBOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the current position represents the beginning of

Any 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String 0:1

MoveNext
Sub MoveNext() Member of
ReqPro40.Views Set the current position in
the collection to the next item

Any 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Boolean read-only Member of
ReqPro40.Application Determines if a
specific project has any outstanding locks.

Boolean 0:1

DirectionName

Property DirectionName As String read-only
Member of ReqPro40.Relationships Returns
the name of the direction of the relationship
objects held by this collection (tracesto,
tracesfrom, child, or parent)

String 0:1

RelationshipTypeName
Property RelationshipTypeName As String
read-only Member of ReqPro40.Relationships
Returns the name of the Relationship objects in

String 0:1

 191

Template Slots

Slot name Documentation Type Cardinality

this collection

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage
Member of ReqPro40.Project

String 0:1

Text
Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the
user logged into the project.

Boolean 0:1

PermissionsForDocType

Property
PermissionsForDocType(lDocTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application Boolean 0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
this interface.

String 0:1

AssignParent

Function AssignParent(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key]) As Requirement Member
of ReqPro40.Requirement Changes the
requirement's parent or sets the it to the root
level.

String 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

TracesTo Property TracesTo As Relationships read- String 0:1

 192

Template Slots

Slot name Documentation Type Cardinality

only Member of ReqPro40.Requirement
Returns a Relationship object for the specified
traces to object

SuspectDateTime
Property SuspectDateTime As String read-
only Member of ReqPro40.Requirement String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

CurrentDerivedKey

Property CurrentDerivedKey As String read-
only Member of ReqPro40.Relationships
Returns the derived key of the Relationship
pointed to by CurrentPosition()

String 0:1

IsNew
Property IsNew As Boolean read-only
Member of ReqPro40.Requirement Indicates
if the requirement is not new.

Boolean 0:1

DocPosition

Property DocPosition As Long read-only
Member of ReqPro40.Requirement Returns
the position of the requirement wit hin the
document.

String 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String 0:1

Children

Property Children As Relationships read-only
Member of ReqPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

DocKey

Property DocKey As Long read-only
Member of ReqPro40.Requirement Retur ns
the key for the Document object associated
with this requirement (if any)

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String 0:1

 193

Template Slots

Slot name Documentation Type Cardinality

ExtendedHelp

Sub ExtendedHelp(sProduct As String,
sSubTool As String, sItem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString
As String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility
As enumViewVisibility = 1]) As View
Member of ReqPro40.Views Adds the
specified view to the collection

String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String 0:1

Level
Property Level As Long read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String 0:1

GetDiscussions Function GetDiscussions() As Discussions String 0:1

 194

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Requirement Returns
the Discussions object associated with this
requirement

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application
Determines whether the server is running

Boolean 0:1

CurrentPosition
Property CurrentPosition As Long Member of
ReqPro40.Views Returns or sets the current
cursor position within the collection

Any 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns
the version revision number

String 0:1

CLASS RELATIONSHIP
Template Slots

Slot name Documentation Type Cardinality

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

ItemCurrent
Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returns the
Document associated with the current item

Any 0:1

CompareVersionNumber
Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version numbers

String 0:1

Tag

Property Tag([eTagFormat As enumTagFormat =
eTagFormat_Tag]) As Strin g read-only Member
of ReqPro40.Requirement Returns the tag for this
requirement

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups =
eRelLookup_Deriv edKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
the Relationship object for the specified child of this
requirement

String 0:1

DocSaveFormat
Property DocSaveFormat As enumDocSaveFormat
Member of ReqPro40.Project Returns the
document save format

String 0:1

 195

Template Slots

Slot name Documentation Type Cardinality

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether the
current user has the project open

Boolean 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDat aTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query for
correct syntax

String 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects to
their state when originally created

Boolean 0:1

VersionDBSchema
Property VersionDBSchema As Long read-only
Member of ReqPro40.Project Returns the database
schema version number

String 0:1

LockCount
Property LockCount As Long read-only
Member of ReqPro40.Project Returns the number
of outstanding locks against the Project.

String 0:1

DocKey

Property DocKey As Long read-only Member of
ReqPro40.Requirement Returns the key for the
Document object associated with this requirement
(if any)

String 0:1

SourceRelKey

Property SourceRelKey As Long read-only
Member of ReqPro40.Relationship Returns the
key of the relationship in the project of the source
Requirement.

String 0:1

RelationshipType

Property RelationshipType As
enumRelationshipTypes read-only Member of
ReqPro40.Relationships Returns an enumerated
value indicating the type of the Relationship objects
in this collection

String 0:1

Flags

Property Flags As enumRequirementFlags read-
only Member of ReqPro40.Requirement Returns
the EnumRequirementFlags object associated with
this requirement

String 0:1

 196

Template Slots

Slot name Documentation Type Cardinality

SetExclusiveAccess
Property SetExclusiveAccess As Boolean Member
of ReqPro40.Project Boolean 0:1

SourceRequirement

Property SourceRequirement([eWeight As
enumRequirementsWeights = eReqWeight_Empty])
As Requirement read-only Member of
ReqPro40.Relationship Returns the source
Requirement object

String 0:1

Version
Property Version As String read-only Member
of ReqPro40.Application Returns the version of
the application

String 0:1

HasTracesFrom

Property HasTracesFrom([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other requirements.
Optionally returns the number of these traces.

Boolean 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key is an
incrementing number assigned as a project is
opened.

String 0:1

SourceProject

Property SourceProject As Project read-only
Member of ReqPro40.Relationship Returns the
Project object associated with the source
Requirement

String 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As enumReqTypesLookups
= eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups = eReqLookup_Empty])
As Requirement Member of ReqPro40.Project

String 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers, sGUID
As String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the
local Catalog object

String 0:1

Level
Property Level As Long read-only Member of
ReqPro40.Requirement Returns the hierarchica l
level of this requirement

String 0:1

GetRootPackage Function GetRootPackage([bLoadAllPackages As String 0:1

 197

Template Slots

Slot name Documentation Type Cardinality

Boolean = False]) As RootPackage Member of
ReqPro40.Project

AuthorID
Property AuthorID As Long read-only Member
of ReqPro40.Project String 0:1

CurrentDerivedKey

Property CurrentDerivedKey As String read-only
Member of ReqPro40.Relationships Returns the
derived key of the Relationship pointed to by
CurrentPosition()

String 0:1

Delete

Sub Delete(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) Member of ReqPro40.Views
Deletes the specified view from the project

Any 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid lock.

String 0:1

DestinationProject

Property DestinationProject As Project read-only
Member of ReqPro40.Relationship Returns the
Project object associated with the destination
Requirement

String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String 0:1

PermissionsForReqText
Property PermissionsForReqText(lReqTypeKey As
Long) As enumPermissions read-only Member
of ReqPro40.Project

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member
of ReqPro40.Application Opens a RequisitePro
project and returns its properties

String 0:1

IsCrossProject

Property IsCrossProject As Boolean read-only
Member of ReqPro40.Relationship Returns
whether this Relationship object represent a cross
project relationship

Boolean 0:1

GetPackage
Function GetPackage(lKey As Long, [eWeight As
enumPackageWeights = ePackageWeight_Empty]) String 0:1

 198

Template Slots

Slot name Documentation Type Cardinality

As Package Member of ReqPro40.Project

oCustomTypes
Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sItem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String 0:1

PersonalCatalogItem

Property PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-only
Member of ReqPro40.Application Returns the
specified catalog item from the Local catalog
collection

String 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As enumRequirementsLookups
= eReqsLookup_ReqTypeKey]) As Long Member
of ReqPro40.Project Returns the count of records
returned by a query.

String 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

PermissionsForReqType

Property PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only Member
of ReqPro40.Project Returns the current user's
permissions for editing the requirements of the
requirement type (data).

String 0:1

HasParent
Property HasParent([lCount As Long]) As Boolean
read-only Member of ReqPro40.Requirement
Returns whether this requirement has a parent

Boolean 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the group of
the current user

String 0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
a Relationships object representing all of the objects
to which this requirement traces

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean Member
of ReqPro40.Application Returns or sets whether
the server raises server events

Boolean 0:1

VersionMajor Property VersionMajor As Long read-only String 0:1

 199

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Application Returns the
major version number of the application

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has administrative
permissions

Boolean 0:1

RelatedRequirement

Property RelatedRequirement(oLocalRequirement
As Requirement, [eWeight As
enumRequirementsWeights = eReqWeight_Empty])
As Requirement read-only Member of
ReqPro40.Relationship Returns the Requirement
object that is related to t he specified requirement

String 0:1

CurrentPosition
Property CurrentPosition As Long Member of
ReqPro40.Views Returns or sets the current cursor
position within the collection

Any 0:1

PermissionsForDocType

Property PermissionsForDocType(lDocTypeKey As
Long) As enumPermissions read-only Member
of ReqPro40.Project Returns the current user's
permissions for editing the Documents of the
Document type (data).

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
String Member of ReqPro40.Application Locks
a specific open project.

String 0:1

SourceKey
Property SourceKey As Long read-only Member
of ReqPro40.Relationship Returns the key of the
source Requirement

String 0:1

IsEOF
Property IsEOF As Boolean read-only Member
of ReqPro40.Views Returns whether the end of
the collection has been reached

Boolean 0:1

AssignParent

Function AssignParent(vReqLookupValue,
[eReqLookupType As enumRequirementLookups =
eReqLookup_Key]) As Requirement Member of
ReqPro40.Requirement Changes the requirement's
parent or sets the it to the root level.

String 0:1

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

HasTracesTo

Property HasTracesTo([lCount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other requirements.
Optionally returns the number of these traces.

Boolean 0:1

WeightName
Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String 0:1

 200

Template Slots

Slot name Documentation Type Cardinality

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

DestinationRequirement

Property DestinationRequirement([eWeight As
enumRequirementsWeights = eReqWeight_Empty])
As Requirement read-only Member of
ReqPro40.Relationship Returns the destination
Requirement object

String 0:1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag As
enumRequirementDeleteFlags =
eReqDelFlag_Empty], [vNewParentLookupValue],
[vNewParentLookupType As
enumRequirementLookups = eReqLookup_Key])
Member of ReqPro40.Requirement Deletes a
requirement from the project and provides options
for dealing with hierarchical children.

String 0:1

SecurityEnabled
Property SecurityEnabled As Boolean Member of
ReqPro40.Project Returns or sets whether security
is enabled for the project

Boolean 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

DestinationRequirementInfo

Property
DestinationRequirementInfo(eRequirementInfoType
As enumObjectInfoTypes) read-only Member of
ReqPro40.Relationship Returns basic destination
Requirement info via direct SQL. Avoids loading
the Requirement object.

String 0:1

Count
Property Count As Long read-only Member of
ReqPro40.Views Returns the number of View
objects in the collect ion

Any 0:1

IsRoot
Property IsRoot As Boolean read-only Member
of ReqPro40.Requirement Returns whether this
requirement is a root requirement

Boolean 0:1

IsInKeyset
Property IsInKeyset(lKey As Long) As Boolean
read-only Member of ReqPro40.Views Returns
whether the specified key is in the collection

Boolean 0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
the Relationship object for the specified traced from
object

String 0:1

MoveNext
Sub MoveNext() Member of ReqPro40.Views
Set the current position in the collection to the next
item

Any 0:1

 201

Template Slots

Slot name Documentation Type Cardinality

IsModified
Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether any
of the Views in the collection have been modified

Boolean 0:1

Text
Property Text As String Member of
ReqPro40.Requirement Returns or sets the textual
definition for this requirement

String 0:1

UserKey
Property UserKey As Long read-only Member
of ReqPro40.Project Returns the key of the current
user

String 0:1

PermissionsForReqName
Property PermissionsForReqName(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

TracesTo
Property TracesTo As Relationships read-only
Member of ReqPro40.Requirement Returns a
Relationship object for the specified traces to object

String 0:1

SourceProjectGUID
Property SourceProjectGUID As String read-only
Member of ReqPro40.Relationship Returns the
Project GUID of the source Requirement.

String 0:1

NextVersionNumber
Property NextVersionNumber As String read-only
Member of ReqPro40.Requirement Returns the
next sequential version number for this requirement

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID As
enumInterfaceIdentifiers, [sVersionNumber As
String]) As Boolean read-only Member of
ReqPro40.Project Returns whether the specified
object is in the database

Boolean 0:1

DocPosition
Property DocPosition As Long read-only
Member of ReqPro40.Requirement Returns the
position of the requirement within the document.

String 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from the
Project object

String 0:1

RelatedRequirementInfo

Property
RelatedRequirementInfo(oLocalRequirement As
Requirement, eRequirementInfoType As
enumObjectInfoTypes) read-only Member of
ReqPro40.Relationship Returns basic related
Requirement info via direct SQL. Avoids loading
the Requirement object.

String 0:1

SuspectDateTime Property SuspectDateTime As String read-only String 0:1

 202

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Requirement

DBState
Property DBState As String read-only Member
of ReqPro40.Requirement Returns the state of the
object in the underlying datasource.

String 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opend the project read
only

Boolean 0:1

MovePrevious
Sub MovePrevious() Member of ReqPro40.Views
Set the current position in the collection to the
previous item

Any 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

MoveLast
Sub MoveLast() Member of ReqPro40.Views
Sets the current position in the collection to the last
item

Any 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns the
minor version number of the application

String 0:1

DestinationProjectGUID
Property DestinationProjectGUID As String read-
only Member of ReqPro40.Relationship Returns
the Project GUID of the destination Requirement.

String 0:1

DerivedKey

Property DerivedKey As String read-only
Member of ReqPro40.Relationship Returns a
unique key composed of the DestProjGUID +
DestReqKey + SourceProjGUID + SourceReqKey.

String 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted for
the specified permission type for the currently
logged in user. The ReqType, ReqTraceability and
ReqText permission types are valid types for this
interface

Boolean 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password String 0:1

IsBOF
Property IsBOF As Boolean read-only Member
of ReqPro40.Views Returns whether the current
position represents the beginning of

Any 0:1

 203

Template Slots

Slot name Documentation Type Cardinality

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently logged in
user for the permission type specified. The
ReqType, ReqTraceability and ReqText permission
types are valid types for this interface.

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project Returns
the current user's permissions for editing the
AttrValues of the Attr type (data).

String 0:1

TracesFrom

Property TracesFrom As Relationships read-only
Member of ReqPro40.Requirement Returns a
Relationships object representing all of the objects
from which this requirement traces

String 0:1

MoveFirst
Sub MoveFirst() Member of ReqPro40.Views
Sets the current position in the collection to the first
item

Any 0:1

StateName

Property StateName As String read-only
Member of ReqPro40.Relationship Returns the
textual representation of the state of this
Relationship

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project Returns the
specified discussion or response

String 0:1

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As String,
ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString As
String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As String],
[sDescription As String], [sVersionReason As
String], [eViewVisibility As enumViewVisibility =
1]) As View Member of ReqPro40.Views Adds
the specified view to the collection

String 0:1

VersionRev
Property Versio nRev As Long read-only
Member of ReqPro40.Application Returns the
version revision number

String 0:1

GetDiscussions
Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns the
Discussions object associated with this requirement

String 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of

String 0:1

 204

Template Slots

Slot name Documentation Type Cardinality

ReqPro40.Project Executes the specified query

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will display a
requirement dialog of the mode and type received.

String 0:1

Children

Property Children As Relationships read-only
Member of ReqPro40.Requirement Returns a
collection of Relationship objects representing the
children of this requirement

String 0:1

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns the
specified View

Any 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the object
for the specified requirement

String 0:1

DirectionName

Property DirectionName As String read-only
Member of ReqPro40.Relationships Returns the
name of the direction of the relationship objects held
by this collection (tracesto, tracesfrom, child, or
parent)

String 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

Boolean 0:1

IsNew
Property IsNew As Boolean read-only Member
of ReqPro40.Requirement Indicates if the
requirement is not new.

Boolean 0:1

Suspect
Property Suspect As Boolean Member of
ReqPro40.Relationships Sets all Relationship
objects in the collection to suspect

Boolean 0:1

IsServerOpen
Proper ty IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

NewReqProCollection Property NewReqProCollection As String 0:1

 205

Template Slots

Slot name Documentation Type Cardinality

ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey As
Long) As enumPermissions read-only Member
of ReqPro40.Project Returns the current user's
permissions for editing the t raceability of
requirements of the requirement type (data).

String 0:1

RelationshipTypeName

Property RelationshipTypeName As String read-
only Member of ReqPro40.Relationships
Returns the name of the Relationship objects in this
collection

String 0:1

DestinationKey
Property DestinationKey As Long read-only
Member of ReqPro40.Relationship Returns the
key of the destination Requirement

String 0:1

SourceRequirementInfo

Property
SourceRequirementInfo(eRequirementInfoType As
enumObjectInfoTypes) read-only Member of
ReqPro40.Relationship Returns basic source
Requirement info via direct SQL. Avoids loading
the Requirement object.

String 0:1

DestinationRelKey

Property DestinationRelKey As Long read-only
Member of ReqPro40.Relationship Returns the
key of the relationship in the project of the
destination Requirement.

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

Bookmark
Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns the
bookmark associated with this requirement (if any)

String 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's
permissions for editing the ListItemValue of the
ListItem type (data).

String 0:1

GetCurrentRelationship
Function GetCurrentRelationship() As Relationship
Member of ReqPro40.Relationships Returns the
Relationship object at the current cursor position

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database Any 0:1

DBProperties Property DBProperties As Object read-only String 0:1

 206

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Returns the
properties for the project

GetRequirements

Function GetRequirements(vReqsLookupValue,
[eReqsLookupType As enumRequirementsLookups
= eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

IsDocBased
Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific
project has any outstanding locks.

Boolean 0:1

CLASS DOCUMENTS
Template Slots

Slot name Documentation Type Cardinality

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the
user logged into the project.

Boolean 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

MovePrevious
Sub MovePrevious() Member of
ReqPro40.Views Set the current position in
the collection to the previous item

Any 0:1

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns
the major version number of the application

String 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String 0:1

PermissionsForDocType
Property
PermissionsForDocType(lDocTypeKey As String 0:1

 207

Template Slots

Slot name Documentation Type Cardinality

Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

CurrentKey

Property CurrentKey As Long read-only
Member of ReqPro40.Views Returns the key
of the Requirement pointed to by
CurrentPosition()

Any 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

Save
Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the
database

Any 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

UserKey
Property UserKey As Long read-only
Member of ReqPro40.Project Returns the key
of the current user

String 0:1

LockProject

Funct ion LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves cur rent security
information from the database

String 0:1

 208

Template Slots

Slot name Documentation Type Cardinality

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns
the version revision number

String 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

GetCurrentDocument

Function GetCurrentDocument() As Document
Member of ReqPro40.Documents Returns the
Document object at the current position in the
collection

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application Boolean 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString
As String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility
As enumViewVisibility = 1]) As View
Member of ReqPro40.Views Adds the

String 0:1

 209

Template Slots

Slot name Documentation Type Cardinality

specified view to the collect ion

ProjectLockCount

Property
ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String 0:1

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String 0:1

CurrentPosition
Property CurrentPosition As Long Member of
ReqPro40.Views Returns or sets the current
cursor position within the collection

Any 0:1

IsOpenedReadOnly

Property IsOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTyp eKey As
Long, lAttrKey As Long, lListItemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListItemValue of the ListItem type (data).

String 0:1

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

ValidPackage_ Function ValidPackage_(lKey As Long) As Boolean 0:1

 210

Template Slots

Slot name Documentation Type Cardinality

Boolean Member of ReqPro40.Project

IsEOF
Property IsEOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the end of the collection has been reached

Boolean 0:1

SecurityEnabled
Property SecurityEnabled As Boolean
Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

Boolean 0:1

IsCurrentUserAdmin

Property IsCur rentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String,
sSubTool As String, sItem As String,
sOperation As Strin g, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups])
As Boolean read-only Member of
ReqPro40.Application Determines if a
specific project has any outstanding locks.

Boolean 0:1

AuthorID
Property AuthorID As Long read-only
Member of ReqPro40.Project String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

PermissionsForReqType

Property
PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default
password

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID
As enumInterfaceIdentifiers, [sVersionNumber
As String]) As Boolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the do cument save
format

String 0:1

GetCurrentUsers Function GetCurrentUsers() As Properties String 0:1

 211

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project

PersonalCatalog
Property PersonalCatalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

PermissionsForReqText

Property
PermissionsForReqText(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

GetRootPackage
Function GetRootPackage([bLoadAllPackages
As Boolean = False]) As RootPackage
Member of ReqPro40.Project

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

SequenceKey

Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String 0:1

GetRequirem ents

Function
GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

 212

Template Slots

Slot name Documentation Type Cardinality

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application
Determines whether the server is running

Boolean 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String 0:1

MoveFirst
Sub MoveFirst() Member of ReqPro40.Views
Sets the current position in the collection to the
first item

Any 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

IsBOF
Property IsBOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the current position represents the beginning of

Any 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns
whether the current user has the project open

Boolean 0:1

LockCount

Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String 0:1

PermissionsForReqName

Property
PermissionsForReqName(lReqT ypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

IsInKeyset
Property IsInKeyset(lKey As Long) As
Boolean read-only Member of
ReqPro40.Views Returns whether the

Boolean 0:1

 213

Template Slots

Slot name Documentation Type Cardinality

specified key is in the collection

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

DocNameExists
Function DocNameExists(sName As String) As
Boolean Member of ReqPro40.Documents String 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project

String 0:1

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of ReqPro40.Project

String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

 214

Template Slots

Slot name Documentation Type Cardinality

MoveNext
Sub MoveNext() Member of
ReqPro40.Views Set the current position in
the collection to the next item

Any 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String 0:1

ItemCurrent
Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returns the
Document associated with the current item

Any 0:1

MoveLast
Sub MoveLast() Member of ReqPro40.Views
Sets the current position in the collection to the
last item

Any 0:1

CLASS DOCUMENT
Template Slots

Slot name Documentation Type Cardinality

FileFlags
Property FileFlags As String read-only
Member of ReqPro40.Document Returns the
file system flags

String 0:1

VersionDBSchema
Property VersionDBSchema As Long read-
only Member of ReqPro40.Project Returns
the database schema version number

String 0:1

CompareVersionNumber

Function CompareVersionNumber(sNumber1 As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String 0:1

ProjectLockCount

Property ProjectLockCount(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String 0:1

IsBOF
Property IsBOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the current position represents the beginning of

Any 0:1

RefreshSecurity
Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String 0:1

oCustomTypes
Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String 0:1

IsEOF
Property IsEOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the end of the collection has been reached

Boolean 0:1

UserKey Property UserKey As Long read-only String 0:1

 215

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project Returns the key
of the current user

CurrentPosition
Property CurrentPosition As Long Member of
ReqPro40.Views Returns or sets the current
cursor position within the collection

Any 0:1

ChangeLoggedInUser

Function ChangeLoggedInUser(vValue,
[eUserLookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

Boolean 0:1

VersionMinor
Property VersionMinor As Long read-only
Member of ReqPro40.Application Returns the
minor version number of the application

String 0:1

IsInDB

Property IsInDB(lKey As Long, eInterfaceID As
enumInterfaceIdentifiers, [sVersionNumber As
String]) As Boolean read-only Member of
ReqPro40.Project Returns whether the
specified object is in the database

Boolean 0:1

RQSFilepath
Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rqs file

String 0:1

GetCurrentProjectUsers
Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

PersonalCatalog
Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the
local Catalog object

String 0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String 0:1

DropObjects

Sub DropObjects(eInterfaceID As
enumInterfaceIdentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String 0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewLookups =
eViewLookup_Key]) As View read-only
Default member of ReqPro40.Views Returns
the specified View

Any 0:1

IsOpenedReadOnly
Property IsOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns Boolean 0:1

 216

Template Slots

Slot name Documentation Type Cardinality

whether the current user has opend the project
read only

PermissionsForReqType

Property PermissionsForReqType(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String 0:1

Count
Property Count As Long read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any 0:1

PermissionsForDocType

Property PermissionsForDocType(lDocTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String 0:1

PermissionsForReqName

Property
PermissionsForReqName(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

DocNameExists
Function DocNameExists(sName As String) As
Boolean Member of ReqPro40.Documents String 0:1

Command
Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String 0:1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sItem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String 0:1

IsProjectLocked

Property IsProjectLocked(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific
project has any outstanding locks.

Boolean 0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypeLookupValue,
[eReqTypeLookupType As
enumReqTypesLookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqLookupValue],
[eParentReqLookupType As
enumRequirementLookups =
eReqLookup_Empty]) As Requirement
Member of ReqPro40.Project

String 0:1

AuthorID Property AuthorID As Long read-only String 0:1

 217

Template Slots

Slot name Documentation Type Cardinality

Member of ReqPro40.Project

GetCurrentUsers
Function GetCurrentUsers() As Properties
Member of ReqPro40.Project String 0:1

IsServerOpen
Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean 0:1

PermissionsForReqText
Property PermissionsForReqText(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project

String 0:1

GetDiscussionItem
Function GetDiscussionItem(lKey As Long) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String 0:1

Name_
Property Name_ As String Member of
ReqPro40.Document String 0:1

IsOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean 0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes a lock from a
specific project.

String 0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String 0:1

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString As
String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility As
enumViewVisibility = 1]) As View Member of
ReqPro40.Views Adds the specified view to
the collection

String 0:1

Version
Property Version As String read-only
Member of ReqPro40.Application Returns the
version of the application

String 0:1

FileExtension
Property FileExtension As String read-only
Member of ReqPro40.Document Returns the
file extension for the document

String 0:1

MoveLast Sub MoveLast() Member of ReqPro40.Views Any 0:1

 218

Template Slots

Slot name Documentation Type Cardinality

Sets the current position in the collection to the
last item

VersionMajor
Property VersionMajor As Long read-only
Member of ReqPro40.Application Returns the
major version number of the application

String 0:1

IsLocked
Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns a value
indicating whether or not the Project is locked.

Boolean 0:1

UserGroupKey
Property UserGroupKey As Long read-only
Member of ReqPro40.Project Returns the
group of the current user

String 0:1

NewReqProCollection

Property NewReqProCollection As
ReqProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String 0:1

FileDateTime
Property FileDateTime As String read-only
Member of ReqPro40.Document Returns the
file system modification time

String 0:1

IsProjectOpen
Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean 0:1

PersonalCatalogItem

Property
PersonalCatalogItem(vCatLookupValue,
[eCatLookupType As enumCatalogLookups =
eCatLookup_Name]) As CatalogItem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String 0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) As Long Member of
ReqPro40.Project Checks the specified query
for correct syntax

String 0:1

Refresh Sub Refresh() Member of ReqPro40.View Any 0:1

CurrentKey

Property CurrentKey As Long read-only
Member of ReqPro40.Views Returns the key
of the Requirement pointed to by
CurrentPosition()

Any 0:1

AutoSuspect
Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean 0:1

SequenceKey
Property SequenceKey As Long read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key

String 0:1

 219

Template Slots

Slot name Documentation Type Cardinality

is an incrementing number assigned as a project
is opened.

PermissionsForAttr

Property PermissionsForAttr(lReqTypeKey As
Long, lAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String 0:1

SecurityEnabled
Property SecurityEnabled As Boolean Member
of ReqPro40.Project Returns or sets whether
security is enabled for the project

Boolean 0:1

ItemCurrent
Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returns the
Document associated with the current item

Any 0:1

IsInKeyset

Property IsInKeyset(lKey As Long) As Boolean
read-only Member of ReqPro40.Views
Returns whether the specified key is in the
collection

Boolean 0:1

GetRequirement

Function GetRequirement(vReqLookupValue,
[eReqLookupType As
enumRequirementLookups =
eReqLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String 0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectLookups]) As
String Member of ReqPro40.Application
Locks a specific open project.

String 0:1

EventRaiseEnabled
Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean 0:1

FullOfflinePath
Property FullOfflinePath As String read-only
Member of ReqPro40.Document Returns the
full path of the offline document

String 0:1

SetExclusiveAccess
Property SetExclusiveAccess As Boolean
Member of ReqPro40.Project Boolean 0:1

ValidPackage_
Function ValidPackage_(lKey As Long) As
Boolean Member of ReqPro40.Project Boolean 0:1

PermissionsForListItemType

Property
PermissionsForListItemType(lReqTypeKey As
Long, lAttrKey As Long, lListItemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's

String 0:1

 220

Template Slots

Slot name Documentation Type Cardinality

permissions for editing the ListItemValue of the
ListItem type (data).

GetRootPackage
Function GetRo otPackage([bLoadAllPackages
As Boolean = False]) As RootPackage Member
of ReqPro40.Project

String 0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean 0:1

GetRequirementsCount

Function
GetRequirementsCount(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String 0:1

MoveNext
Sub MoveNext() Member of ReqPro40.Views
Set the current position in the collection to the
next item

Any 0:1

Revert
Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean 0:1

LogRelationshipRevisions
Property LogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean 0:1

GetCurrentDocument

Function GetCurrentDocument() As Document
Member of ReqPro40.Documents Returns the
Document object at the current position in the
collection

String 0:1

PWD
Property PWD As String Member of
ReqPro40.Application Sets a default password String 0:1

ItemLabel
Property ItemLabel As Boolean Member of
ReqPro40.Document Boolean 0:1

GetRequirements

Function GetRequirements(vReqsLookupValue,
[eReqsLookupType As
enumRequirementsLookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [lPageSize As Long =
1000], [lPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

IsValidLock
Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As String 0:1

 221

Template Slots

Slot name Documentation Type Cardinality

enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

CloseServer
Sub CloseServer() Member of
ReqPro40.Application Reserved Any 0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String 0:1

VersionRev
Property VersionRev As Long read-only
Member of ReqPro40.Application Returns the
version revision number

String 0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean 0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumInterfaceIdentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String 0:1

XMLVersion
Property XMLVersion As Long read-only
Member of ReqPro40.Project String 0:1

MovePrevious
Sub MovePrevious() Member of
ReqPro40.Views Set the current position in the
collection to the prev ious item

Any 0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(lReqTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String 0:1

MoveFirst
Sub MoveFirst() Member of ReqPro40.Views
Sets the current position in the collection to the
first item

Any 0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumInterfaceIdentifiers,
sGUID As String, vEventData, eEventDataType
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any 0:1

 222

Template Slots

Slot name Documentation Type Cardinality

LockCount
Property LockCount As Long read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String 0:1

DBProperties
Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String 0:1

Save
Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the database Any 0:1

DocTypeKey
Property DocTypeKey As Long read-only
Member of ReqPro40.Document Returns the
key for the document type of the document

String 0:1

AreProjectsLocked
Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application Boolean 0:1

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of ReqPro40.Project

String 0:1

 223

APPENDIX D. CLASS HIERARCHY FOR
SEATOOLS_ONTOLOGY PROJECT

Following the same pattern used to present the RequisitePro ontology, in this

appendix we present the SEATools ontology captured in Protégé -2000. We start by

illustrating the class hierarchy tree for the SEATools ontology. This hierarchy consists of

a selected set of classes (a subset of all SEATools classes) that we judged to be most

useful for establishing our interoperability ontology. Following the hierarchy all of these

classes are then show n in detail. These classes include: DataFlowComponent, Edge,

Vertex, PSDLTime, DataTypeObj, DataTypes, TypeOp, TimerOp, ExceptionGuard,

OutputGuard, VertexProperties, EdgeProperties, PSDLBuilderConstraints, PSDLBuilder,

Token, CompilePrototype, TranslatePrototype, SchedulePrototype, ExecutePrototype,

CAPSAdaFileList, CAPSMainWindow and CAPSResultList.

 224

o SEATools
§ DataFlowComponent

§ Edge
§ Vertex

§ PSDLTime
§ DataTypeObj
§ DataTypes
§ TypeOp
§ TimerOp
§ ExceptionGuard
§ OutputGuard
§ VertexProperties
§ EdgeProperties
§ PsdlBuilderConstants

§ PsdlBuilder
§ Token
§ CompilerPrototype
§ TranslatePrototype
§ SchedulePrototype
§ ExecutePrototype
§ CapsAdaFileList
§ CapsMainWindow
§ CapsResultList

 225

Project: SEATools _Ontology:
Class DataFlowComponent

Template Slots

Slot name Documentation Type Cardinality Default

delete:void public method String 0:1

getLabelXOffset:int public method Integer 0:1

setld:void public method String 0:1

setLabelOffset:void public method String 0:1

toString:String public method String 0:1

setLabelXOffset:void public method String 0:1

setLabelYOffset:void public method String 0:1

setLabel:void public method String 0:1

setMetXOffset:void public method String 0:1

moveTo:void public method String 0:1

getMetlFont:Font public method String 0:1

setMet:void public method String 0:1

getLabel:string public method String 0:1

getMetXOffset:int public method Integer 0:1

getMetYOffset:int public method Integer 0:1

getLabelYOffset:int public method Integer 0:1

getY:int public method Integer 0:1

getld:int public method Integer 0:1

getMet:PSDLTime public method String 0:1

setMetYOffset:void public method String 0:1

getX:int public method Integer 0:1

CLASS EDGE
Template Slots

Slot name Documentation Type Cardinality Default

delete:void public method String 0:1

getLabel:string public method String 0:1

source.get:Vertex String 0:1

initialControlPoints.get:String String 0:1

setMet:void public method String 0:1

getY:int public method Integer 0:1

initialControlPoints.set:String String 0:1

points.set:Vector multiple Floats Float 0:1

 226

Template Slots

Slot name Documentation Type Cardinality Default

streamType.get:String String 0:1

initialValue.get:String String 0:1

setMetXOffset:void public method String 0:1

getld:int public method Integer 0:1

setLabelXOffset:void public method String 0:1

setLabel:void public method String 0:1

source.set:Vertex String 0:1

getMetYOffset:int public method Integer 0:1

edgeID.get:int Integer 0:1

toString:String public method String 0:1

destination.set:String String 0:1

stateStream.set:boolean Boolean 0:1

selectedHandleIndex.get:int Integer 0:1

stateStream.get:boolean Boolean 0:1

setLabelOffset:void public method String 0:1

getX:int public method Integer 0:1

streamType.set:String String 0:1

getMetlFont:Font public method String 0:1

stateStream:boolean Float 0:1

getMet:PSDLTime public method String 0:1

setMetYOffset:void public method String 0:1

destination.get:String String 0:1

initialValue.set:String String 0:1

moveTo:void public method String 0:1

getLabelYOffset:int public method Integer 0:1

edgeID.set:int Integer 0:1

selectedHandleIndex.set:int Integer 0:1

getLabelXOffset:int public method Integer 0:1

getMetXOffset:int public method Integer 0:1

setLabelYOffset:void public method String 0:1

points.get:Vector multiple Floats Float 0:1

setld:void public method String 0:1

 227

CLASS VERTEX
Template Slots

Slot name Documentation Type Cardinality Default

specReqmts.set:Vector multiple Floats Float 0:1

timingType.set:int Integer 0:1

timerList.set:Vector multiple Floats Float 0:1

extractList:String public String 0:1

terminator:boolean Boolean 0:1

getMetlFont:Font public method String 0:1

specReqmts.get:Vector multiple Floats Float 0:1

exceptionList:String String 0:1

inEdgesVector.get:vector String 0:1

timingType.get:int Integer 0:1

idExtension.set:int Integer 0:1

exceptionList.get:String String 0:1

triggerStreamsList.set:Vector multiple Floats Float 0:1

cloneVertexID.set:int Integer 0:1

graphDesc.get:String String 0:1

getSpecification:String public String 0:1

impLanguage.set:String String 0:1

vertexID:int Integer 0:1

getLabelYOffset:int public method Integer 0:1

outEdgesVector.get:Vector String 0:1

setMetYOffset:void public method String 0:1

outputGuardList:String String 0:1

graphDesc:String String 0:1

defaultOutputGuards:OutputGuards String 0:1

finishWithin:PSDLYime String 0:1

delete:void public method String 0:1

getLabelXOffset:int public method Integer 0:1

getTimerOpList:String public String 0:1

triggerType:int Integer 0:1

setMet:void public method String 0:1

keywordList.get:Vector multiple Floats Float 0:1

setLabelOffset:void public method String 0:1

timerList.get:Vector multiple Floats Float 0:1

 228

Template Slots

Slot name Documentation Type Cardinality Default

getExceptionGuardList:String public String 0:1

keywordList.set:Vector multiple Floats Float 0:1

idExtension.get:int Integer 0:1

setld:void public method String 0:1

idExtension:int Integer 0:1

genericList.set:String String 0:1

timerOplist.get:String String 0:1

finishWithin.set:PSDLYime String 0:1

extractOtherPropertiesList:String public String 0:1

mcp.set:PSDLTime String 0:1

period.set:PSDLTime String 0:1

genericList:String String 0:1

exceptionGuard:ExceptionGuard String 0:1

ifCondition:String String 0:1

triggerReqmts.get:Vector multiple Floats Float 0:1

graphDesc.set:String String 0:1

vertexID.set:int Integer 0:1

terminator.set:boolean Boolean 0:1

getX:int public method Integer 0:1

specReqmts:Vector multiple Floats Float 0:1

formalDesc.set:String String 0:1

mrtReqmts.get:Vector multiple Floats Float 0:1

PERIODIC:int public Integer 0:1

exist:boolean public Boolean 0:1

terminator.get:boolean Boolean 0:1

outEdgesVector.set:Vector String 0:1

setMetXOffset:void public method String 0:1

inEdgesVector.set:vector String 0:1

exceptionGuardList:String String 0:1

exceptionGuard.get:ExceptionGuard String 0:1

criticalStatus:int Integer 0:1

outputGuardList.set:String String 0:1

timerOplist:String String 0:1

getOtherPropertiesList:Vector public String 0:1

 229

Template Slots

Slot name Documentation Type Cardinality Default

formalDesc.get:String String 0:1

defaultOutputGuards.get:OutputGuards String 0:1

triggerType.get:int Integer 0:1

updateOutputGuards:void public String 0:1

NON TIME CRITICAL:int public Integer 0:1

moveTo:void public method String 0:1

isParent:Boolean Boolean 0:1

mrt:PSDLTime String 0:1

exceptionGuardList.get:String String 0:1

getld:int public method Integer 0:1

SPORADIC:int public Integer 0:1

outEdgesVector:Vector String 0:1

finishWithin.get:PSDLYime String 0:1

BY SOME:int public Integer 0:1

periodReqmts.get:Vector multiple Floats Float 0:1

criticalStatus.set:int Integer 0:1

exceptionGuardList.set:String String 0:1

mcpReqmts.get:Vector multiple Floats Float 0:1

finishWithinReqmts.set:Vector multiple Floats Float 0:1

criticalStatus.get:int Integer 0:1

isParen.gett:Boolean Boolean 0:1

getMet:PSDLTime public method String 0:1

ifCondition.get:String String 0:1

setLabelXOffset:void public method String 0:1

metReqemts.get:Vector multiple Floats Float 0:1

informalDesc.set:String String 0:1

informalDesc.get:String String 0:1

netWorkLabel.set:String String 0:1

INITIAL RADIUS:int public Integer 0:1

mcp:PSDLTime String 0:1

mrt.set:PSDLTime String 0:1

period:PSDLTime String 0:1

informalDesc:String String 0:1

triggerType.set:int Integer 0:1

 230

Template Slots

Slot name Documentation Type Cardinality Default

outputGuardList.get:String String 0:1

exceptionGuard.set:ExceptionGuard String 0:1

periodReqmts:Vector multiple Floats Float 0:1

BY ALL:int public Integer 0:1

defaultOutputGuards.set:OutputGuards String 0:1

getLabel:string public method String 0:1

triggerReqmts:Vector multiple Floats Float 0:1

mrt.get:PSDLTime String 0:1

triggerStreamsList.get:Ve ctor multiple Floats Float 0:1

timerOplist.set:String String 0:1

impLanguage:String String 0:1

extractString:String public String 0:1

finishWithinReqmts.get:Vector multiple Floats Float 0:1

exceptionList.set:String String 0:1

mrtReqmts.set:Vector multiple Floats Float 0:1

ifCondition.set:String String 0:1

mrtReqmts:Vector multiple Floats Float 0:1

cloneVertexID.get:int Integer 0:1

getOtherPropertiesList String 0:1

metReqemts:Vector multiple Float Float 0:1

getY:int public method Integer 0:1

impLanguage.get:String String 0:1

getOutputGuardList:String public String 0:1

isParent.set:Boolean String 0:1

metReqemts.set:Vector multiple Float Float 0:1

genericList.get:Strin g String 0:1

contains:boolean public Boolean 0:1

setLabelYOffset:void public method String 0:1

keywordList:Vector multiple Floats Float 0:1

UNPROTECTED:int public Integer 0:1

getMetXOffset:int public method Integer 0:1

getMetYOffset:int public method Integer 0:1

mcpReqmts:Vector multiple Floats Float 0:1

mcpReqmts.set:Vector multiple Floats Float 0:1

 231

Template Slots

Slot name Documentation Type Cardinality Default

triggerStreamsList:Vector multiple Floats Float 0:1

formalDesc:String String 0:1

setLabel:void public method String 0:1

toString:String public method String 0:1

triggerReqmts.set:Vector multiple Floats Float 0:1

inEdgesVector:vector String 0:1

cloneVertexID:int Integer 0:1

vertexID.get:int Integer 0:1

period.get:PSDLTime String 0:1

periodReqmts.set:Vector multiple Floats Float 0:1

mcp.get:PSDLTime String 0:1

netWorkLabel.get:String String 0:1

finishWithinReqmts:Vector multiple Floats Float 0:1

timerList:Vector multiple Floats Float 0:1

netWorkLabel:String String 0:1

timingType:int Integer 0:1

CLASS PSDLTIME
Template Slots

Slot name Documentation Type Cardinality Default

timeInSecond.get:double String 0:1

getTimeUnits:int public method Integer 0:1

min:int public Integer 0:1

timeValue.set:int Integer 0:1

timeInSecond.set:double String 0:1

setTimeUnits:void public method String 0:1

microsec:int public Integer 0:1

timeValue.get:int Integer 0:1

ms:int public Integer 0:1

timeValue:int Integer 0:1

hours:int public Integer 0:1

sec:int public Integer 0:1

timeInSecond:double String 0:1

 232

CLASS DATATYPEOBJ
Template Slots

Slot name Documentation Type Cardinality Default

genDecl.get:String String 0:1

genDecl.set:String String 0:1

ops.get:Vector multiple Floats Float 0:1

ops.set:Vector multiple Floats Float 0:1

impl.set:String String 0:1

name:String String 0:1

genDecl:String public String 0:1

keyDecs.set:String String 0:1

impl.get:String String 0:1

keyDecs.get:String String 0:1

toSring:String public String 0:1

typeImpl:String public String 0:1

name.get:String String 0:1

existOp:boolean public Boolean 0:1

typeName:String public String 0:1

keyDesc:String String 0:1

updateTypeOp:void String 0:1

findTypeOp:TypeOp public String 0:1

name.set:String String 0:1

CLASS DATATYPES
Template Slots

Slot name Documentation Type Cardinality Default

existType:boolean public Boolean 0:1

findType:DataTypeObj public String 0:1

UpdateTypes:void public String 0:1

addType:void public String 0:1

CLASS TYPEOP
Template Slots

Slot name Documentation Type Cardinality Default

opSpec:String public String 0:1

opName:Strin g public String 0:1

 233

CLASS TIMEROP
Template Slots

Slot name Documentation Type Cardinality Default

reqTrace:String public String 0:1

reqTrace.set:String String 0:1

guardCondition.get:String String 0:1

timerOperation.get:string String 0:1

guardCondition:String public String 0:1

guardCondition.set:String String 0:1

timerOperation.set:string String 0:1

timerOperation:String public String 0:1

reqTrace.get:String String 0:1

CLASS EXCEPTIONGUARD
CLASS OUTPUTGUARD
CLASS VERTEXPROPERTI ES

Template Slots

Slot name Documentation Type Cardinality Default

periodField:JTextField declaration String 0:1

TO OPERATOR:int public Integer 0:1

resetTiming:void public method String 0:1

resetTimingPanelCom ponents:void public method String 0:1

keywordsButton:JButton declaration Boolean 0:1

dVertex:DisplayVertex declaration String 0:1

returnTopestParent:Vertex public method String 0:1

vertex.get:Vertex String 0:1

namaField:JTextField declaration String 0:1

currentTimingType:int public Integer 0:1

TO TERMINATOR:int public Integer 0:1

metReqByButton:JButton declaration Boolean 0:1

initialize:void public method String 0:1

metField:JTextField declaration String 0:1

hardRB:JRadioButton declaration Boolean 0:1

vertex.set:Vertex String 0:1

UNCHANGED:int public Integer 0:1

updateChildTiming:void public method String 0:1

ifCondField:TextArea declaration String 0:1

 234

Template Slots

Slot name Documentation Type Cardinality Default

fwReqByButton:JButton declaration Boolean 0:1

softRB:JRadioButton declaration Boolean 0:1

triggerReqByButton:JButton declaration Boolean 0:1

fwUnitsCombo:JComboBox multiple,string,int,floats Any 0:1

vertex:Vertex String 0:1

isTimingTypeChanged:boolean public Boolean 0:1

metUnitsCombo:JComboBox
multiple, string, int,
floats Any 0:1

tempVertex:Vertex declaration String 0:1

formalDescButton:JButton declaration Boolean 0:1

periodUnitsCombo:JComboBox multiple,string,int,floats Any 0:1

languageCombo:JComboBox
multiple,
string,int,floats Any 0:1

informalDescButton:JButton declaration Boolean 0:1

targetVertex:Vertex declaration String 0:1

periodReqByButton:JButton declaration Boolean 0:1

actionPerformed:void public method String 0:1

operatorCombo:JComboBox
multiple,
string,int,floats Any 0:1

ifConditionButton:JButton declaration Boolean 0:1

outputGuardsButton:JButton declaration Boolean 0:1

updatePeriod:void public method String 0:1

timerOpsButton:JButton declaration Boolean 0:1

resetVertexType:void public method String 0:1

isVertexTypeChanged:boolean public Boolean 0:1

CLASS EDGEPROPERTIES
Template Slots

Slot name Documentation Type Cardinality Default

firstEnter:boolean declaration Boolean 0:1

ePath:EdgePath declaration String 0:1

edge:Edge String 0:1

edgePath.get:EdgePath String 0:1

edge.set:Edge String 0:1

nameField:JTextField declaration String 0:1

targetEdge:Edge declaration String 0:1

 235

Template Slots

Slot name Documentation Type Cardinality Default

copyEdge:void public String 0:1

intValueField:JTextField declaration String 0:1

copyType:void private String 0:1

edge.get:Edge String 0:1

edgePath:EdgePath String 0:1

edgePath.set:EdgePath String 0:1

latencyField:JTextField declaration String 0:1

CLASS PSDLBUILDERCONSTANTS
Template Slots

Slot name Documentation Type Cardinality Default

LESS THAN public Integer 0:1

MIN public Integer 0:1

MICROSEC public Integer 0:1

INT DIGIT public Integer 0:1

VERTEX public Integer 0:1

ID LETTER public Integer 0:1

OR public Integer 0:1

DIGIT public Integer 0:1

FALSE public Integer 0:1

LETTER public Integer 0:1

STAR public Integer 0:1

CHAR TEXT public Integer 0:1

AXIOMS public Integer 0:1

AND public Integer 0:1

STRING LITERAL public Integer 0:1

IMPLEMENTATION public Integer 0:1

CHAR LIT public Integer 0:1

OUTPUT public Integer 0:1

TRUE public Integer 0:1

IDENTIFIER public Integer 0:1

TRIGGERED public Integer 0:1

STR public Integer 0:1

XOR public Integer 0:1

DEFAULT public Integer 0:1

 236

Template Slots

Slot name Documentation Type Cardinality Default

TIMER public Integer 0:1

NOT public Integer 0:1

DESCRIPTION public Integer 0:1

KEYWORDS public Integer 0:1

GENERIC public Integer 0:1

GRAPH public Integer 0:1

PLUS public Integer 0:1

tokenImage public String 0:1

REM public Integer 0:1

AMPERCENT public Integer 0:1

ABS public Integer 0:1

EXCEPTIONS public Integer 0:1

IF public Integer 0:1

GREATER OR EQUAL
TO public Integer 0:1

SPECIFICATION public Integer 0:1

EOF public Integer 0:1

SEC public Integer 0:1

TYPE public Integer 0:1

NETWORKMAPPING public Integer 0:1

INPUT public Integer 0:1

ID DIGIT public Integer 0:1

INITIALLY public Integer 0:1

FACTOR public Integer 0:1

LESS OR EQUAL TO public Integer 0:1

EQUALS public Integer 0:1

DASH public Integer 0:1

TEXT public Integer 0:1

OPERATOR public Integer 0:1

LITTERORDIGIT public Integer 0:1

MINUS public Integer 0:1

END public Integer 0:1

MS public Integer 0:1

STATES public Integer 0:1

 237

Template Slots

Slot name Documentation Type Cardinality Default

GREATER THAN public Integer 0:1

MOD public Integer 0:1

EXCEPTION public Integer 0:1

INTEGER LITERAL public Integer 0:1

PERIOD public Integer 0:1

EDGE public Integer 0:1

STAR STAR public Integer 0:1

DIVIDE EQUALS public Integer 0:1

HOURS public Integer 0:1

PROPERTY public Integer 0:1

CLASS PSDLBUILDER
Template Slots

Slot name Documentation Type Cardinality Default

EXCEPTION public Integer 0:1

initial expression list:Vector public method String 0:1

REM public Integer 0:1

initial expression suffix2 public method String 0:1

initial expression suffix1 public method String 0:1

id list:vector public method String 0:1

STRING LITERAL public Integer 0:1

tokenImage public String 0:1

integer literal public method String 0:1

IMPLEMENTATION public Integer 0:1

build exception guard map:Exc public method String 0:1

findCild:Vertex public method String 0:1

INT DIGIT public Integer 0:1

EDGE public Integer 0:1

streams:void public method String 0:1

check output guards:void public method String 0:1

networ mapping public method String 0:1

TEXT public Integer 0:1

HOURS public Integer 0:1

INITIALLY public Integer 0:1

id:String public method String 0:1

 238

Template Slots

Slot name Documentation Type Cardinality Default

IF public Integer 0:1

EOF public Integer 0:1

data type:void public method String 0:1

DESCRIPTION public Integer 0:1

OR public Integer 0:1

data flow diagram:void public method String 0:1

buildPrototype:Vertex public method String 0:1

EXCEPTIONS public Integer 0:1

initial expression tail public method String 0:1

DEFAULT public Integer 0:1

label public String 0:1

STAR public Integer 0:1

expression suffix2 public method String 0:1

expression public method String 0:1

STAR STAR public Integer 0:1

DIVIDE EQUALS public Integer 0:1

EQUALS public Integer 0:1

vertex:void public method String 0:1

build timer op
map:TimerOpMap

public method String 0:1

operator spec:void public method String 0:1

type decl:Vector public method String 0:1

TRIGGERED public Integer 0:1

currentOp.set:Vertex property String 0:1

type name public method String 0:1

currentOp.get:Vertex property String 0:1

findRoot:Vertex public method String 0:1

unary op public method String 0:1

initial expression public method String 0:1

check timer ops:void public method String 0:1

LITTERORDIGIT public Integer 0:1

IDENTIFIER public Integer 0:1

UpdateEdgeStreamType:Void public method String 0:1

informal desc public method String 0:1

 239

Template Slots

Slot name Documentation Type Cardinality Default

idExtension public Integer 0:1

AMPERCENT public Integer 0:1

MICROSEC public Integer 0:1

expression 1 public method String 0:1

psdl:void public method String 0:1

CHAR TEXT public Integer 0:1

TYPE public Integer 0:1

expression tail public method String 0:1

control constraints:void public method String 0:1

MIN public Integer 0:1

inter face:void public method String 0:1

op id public method String 0:1

op name public method String 0:1

PLUS public Integer 0:1

initial expression 1 public method String 0:1

MOD public Integer 0:1

extractIdList public method String 0:1

STATES public Integer 0:1

DIGIT public Integer 0:1

token:Token public Symbol 0:1

NETWORKMAPPING public Integer 0:1

operator impl:void public method String 0:1

check exception guards:void public method String 0:1

NOT public Integer 0:1

extractLabel:void public method String 0:1

END public Integer 0:1

XOR public Integer 0:1

OUTPUT public Integer 0:1

FALSE public Integer 0:1

GRAPH public Integer 0:1

GREATER OR EQUAL TO public Integer 0:1

ID DIGIT public Integer 0:1

nextToken.set:Token property String 0:1

binary op public method String 0:1

 240

Template Slots

Slot name Documentation Type Cardinality Default

component:void public method String 0:1

edge:void public method String 0:1

timer op public method String 0:1

constraint options:void public method String 0:1

trigger:Vector public method String 0:1

findOperator:Vertex public method String 0:1

PROPERTY public Integer 0:1

constraints:void public method String 0:1

SPECIFICATION public Integer 0:1

CHAR LIT public Integer 0:1

KEYWORDS public Integer 0:1

setVertexProperty:void public method String 0:1

unit public method String 0:1

jj nt:Token public Symbol 0:1

INTEGER LITERAL public Integer 0:1

MS public Integer 0:1

AXIOMS public Integer 0:1

time:PSDLTime public method String 0:1

STR public Integer 0:1

LETTER public Integer 0:1

expression list public method String 0:1

TRUE public Integer 0:1

id public Integer 0:1

MINUS public Integer 0:1

GREATER THAN public Integer 0:1

DASH public Integer 0:1

PERIOD public Integer 0:1

AND public Integer 0:1

formal desc public method String 0:1

OPERATOR public Integer 0:1

type impl suffix:void public method String 0:1

timers:void public method String 0:1

findTypeDec:Edge public method String 0:1

check exception list:void public method String 0:1

 241

Template Slots

Slot name Documentation Type Cardinality Default

build output guard map:output public method String 0:1

setEdgeProperty:void public method String 0:1

type impl:void public method String 0:1

LESS OR EQUAL TO public Integer 0:1

property:void public method String 0:1

psdl impl:void public method String 0:1

type name suffix public method String 0:1

attribute:void public method String 0:1

keywords:Vector public method String 0:1

INPUT public Integer 0:1

FACTOR public Integer 0:1

nextToken.get:Token property String 0:1

operator impl suffix public method String 0:1

type spec:void public method String 0:1

reqmts trace:Vector public method String 0:1

ID LETTER public Integer 0:1

empty string:void public method String 0:1

SEC public Integer 0:1

expression suffix1 public method String 0:1

LESS THAN public Integer 0:1

ABS public Integer 0:1

VERTEX public Integer 0:1

vertex type public method String 0:1

GENERIC public Integer 0:1

TIMER public Integer 0:1

operator:void public method String 0:1

CLASS TOKEN
Template Slots

SLOT NAME DOCUMENTATION TYPE CARDINALITY DEFAULT

specialToken public Symbol 0:1

beginColumn public Integer 0:1

kind public Integer 0:1

next:Token public Symbol 0:1

beginLine public Integer 0:1

 242

Template Slots

SLOT NAME DOCUMENTATION TYPE CARDINALITY DEFAULT

endColumn public Integer 0:1

toString public method String 0:1

image public String 0:1

newToken:Token public method Symbol 0:1

endLine public Integer 0:1

CLASS COMPILERPROTOTYPE
CLASS TRANSLATEPROTO TYPE
CLASS SCHEDULEPROTOTYPE
CLASS EXECUTEPROTOTYPE
CLASS CAPSADAFILELIST

Template Slots

Slot name Documentation Type Cardinality Default

setProtoVersion:void public method String 0:1

saveAdaFile:void public method String 0:1

setProtoName:void public method String 0:1

valueChanged:void public method String 0:1

SetAdaFiles:void public method String 0:1

CLASS CAPSMAINWINDOW
Template Slots

Slot name Documentation Type Cardinality Default

prototypeNam e.get String 0:1

protoVersion.get String 0:1

schedResult:CapsResultList schedResult:CapsResultList String 0:1

initialize
initialize:void (public
method) String 0:1

protoHome.set String 0:1

transList.set:CapsResultList String 0:1

showErrorDialog:void public method String 0:1

compilList.set:CapsResultList String 0:1

scheList.get:CapsResultList String 0:1

adaTemplet.get:File String 0:1

schedulePrototype:void public method String 0:1

prototypeFile.get:File String 0:1

compiling Boolean 0:1

 243

Template Slots

Slot name Documentation Type Cardinality Default

scheduling Boolean 0:1

adaTemplet.set:File String 0:1

compilePrototype:void public method String 0:1

executePrototype:void public method String 0:1

savePrototype:void public method String 0:1

root.set:Vertex String 0:1

scheList.set:CapsResultList String 0:1

transResult:CapsResultList transResult:CapsResultList String 0:1

scheduleOk Integer 0:1

protoName.set String 0:1

transList.get:CapsResultList String 0:1

protoName.get String 0:1

protoHome.get String 0:1

compiResult:CapsResultList compiResult:CapsResultList String 0:1

prototype.set:File String 0:1

prototypeName.set String 0:1

translateOk Integer 0:1

translating Boolean 0:1

editing Integer 0:1

prototype.get:File String 0:1

editing:boolean Boolean 0:1

translatePrototype:void public method String 0:1

root.get:Vertex String 0:1

editPrototype:void public method String 0:1

checkSaved public method Boolean 0:1

compileOk Integer 0:1

prototypeFile.set:File String 0:1

compilList.get:CapsResultList String 0:1

protoVersion.set String 0:1

 244

CLASS CAPSRESULTLIST
Template Slots

Slot name Documentation Ty pe Cardinality Default

setResultItem:void public method String 0:1

refreshResultList:void public method String 0:1

addResult:void public method String 0:1

 245

APPENDIX E. CLASS HIERARCHY FOR
HIGH_LEVEL_ONTOLOGY PROJECT

Appendix E presents the High-Level Software Development Tool Ontology

(high_level_ontology) project generated by Protégé-2000. This ontology is given as a

class hierarchy of the different classes of the high level ontology accounted for in

developing the interoperability ontology. Note here that there are currently no slots

defined for this high level ontology.

 246

o Tool
o Actor

§ Team
§ Stakeholders

§ Developers
§ Designers
§ Architects

o Activity
§ Communication
§ Management

§ Organization
§ Sorting
§ Filtering
§ Synchronization
§ Archiving

§ Maintenance
§ Creation

§ Coding
§ Modification
§ Verification

o Artifacts
§ Document

§ Reports
§ Statistics
§ Database
§ Feedback
§ Efficiency
§ Links_Dependencies_Traceability

§ Security
§ Child_Parent
§ Risk
§ Safety

§ Project_Component
§ Requirements
§ Model
§ Use_Case
§ Library
§ Prototype

§ Testing

Project: test_ontology
Class Tool
Class Actor

Class Team

 247

Class Stakeholders
Class Designers
Class Developers
Class Architects
Class Activity
Class Communication
Class Management
Class Organization
Class Maintenance
Class Creation
Class Modification
Class Verification

 248

THIS PAGE INTENTIONALLY LEFT BLANK

 249

LIST OF REFERENCES

[BADR93] Badr, S., “A Model and Algorithms for a Software Evolution Control
System,” Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, California, December, 1993.

[BERN96] Bernstein, L., “Forward: Importance of Software Prototyping”, Journal of
Systems Integration- Special Issue on Computer Aided Prototyping, 6(1),
pp. 9-14, 1996.

[BOOC94] Booch, G., “Object-Oriented Analysis and Design”, Second Edition.
Reading, Massachusetts, Addition-Wesley, 1994.

[CORA02] Descriptive and Formal Ontology, Raul Corazzon,
[http://www.formalontology.it/], 05 October 2002.

[CRAN01] Cranefield, S., Haustein, S., and Purvis, M. K., “UML-Based Ontology
Modelling for Software Agents,”
[http://citeseer.nj.nec.com/cranefield01umlbased.html], July 2001.

[CZAR00] Czarnecki, K. and Eisenecker, U., Generative Programming Methods,
Tools, and Applications, Addison-Wesley, p. 78, 2000.

[DAML02] “DARPA Agent Markup Language”, [http://www.daml.org/], 21
November 2002.

[DURA99] Duranlioglu, I., “Implementation of a Portable PSDL Editor for the
Heterogeneous Systems Integrator,” Master’s Thesis, Naval Postgraduate
School, Monterey, California, March 1999.

[ENTR02] “The Enterprise Ontology,”
[http://www.aiai.ed.ac.uk/~entprise/enterprise/ontology.html], 23 April
2002.

[ERIK95] Eriksson, H., Tu, S. W., Shahar, Y., and Musen, M. A. (1995), “Ontology -
Based Configuration of Problem-Solving Methods and Generation of
Knowledge-Acquisition Tools: Application of PROTÉGÉ -II to Potocol-
Bsed Dcision Spport, Artificial Intelligence in Medicine, [http://www-
smi.stanford.edu/pubs/SMI_Reports/SMI -94-0520.pdf], 7:257-289, 1995.

[EVAL02] “Evaluation of Rational RequisitePro as a General Artifact Manager,”
[http://research.cs.tamu.edu/LSR/gaydos_lcam.html], 26 October 2002.

[GEYE00] Geyer, Lars, “Feature Modeling Using Design Spaces , Proceedings of 1st
German Workshop on Product Line Software Engineering, Kaiserslautern,
Germany, November 2000.

 250

[GRUB02] Tom Gruber, What is an Ontology? [http://www-
ksl.stanford.edu/kst/what -is-an-ontology.html], 05 October 2002.

[GRUB95] Gruber, T. R., “Toward Pinciples for the Design of Ontologies Used for
Knowledge Sharing,” Int. J. Human-Computer Studies, 43, pp. 907-928,
1995.

[HARN99c] Harn, M., “Computer -Aided Software Evolution Based on Inferred
Dependencies,” Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, California, 1999.

[IBRA96] Ibrahim, O. M., “A Model and Decision Support Mechanism for Software
Requirements Engineering,” Ph.D. Dissertation, Computer Science
Department, Naval Postgraduate School, Monterey, California, 1996.

[INTR02] Introduc tion to OMG's Unified Modeling Language™ (UML™) Object
Management Group (OMG),
[http://www.omg.org/gettingstarted/what_is_uml.htm], 30 December
2002.

[KANG90] Kang, K., Cohen, S., Nowak, W., and Peterson, S., “Feature-Oriented
Domain Analysis (FODA) Feasibility Study,” Technical Report,
CMU/SEI-90-TR-21, Software Engineering Institute, Camegie Mellon
University, Pittsburgh, Pennsylvania, November 1990.

[LEFF00] Leffingwell, D. and Widrig, D. , Managing Software Requirements: A
Unified Approach, Addison-Wesley, 2000.

[LENA90] Lenat, D. B. and Guha, R. V., Building Large Knowledge-Based Systems,
Reading, Addison-Wesley, 1990.

[LENC01] Lenci, A., “Building an Ontology for the Lexicon: Semantic Types and
Word Meaning,” [Jensen and Skadhauge (eds.) 01], pp. 103-120,
[http://www.ontoquery.dk/publications/docs/Building_an_Ontology.doc],
27 November 2002.

[LUQI02] Luqi, Berzins, V., Shing, M., Nada, N. and Eagle, C., Computer Aided
Prototyping System (CAPS) for Heterogeneous Systems Development and
Integration*,
[http://www.dodccrp.org/2000CCRTS/cd/html/pdf_papers/Track_2/129.p
df], 26 October 2002.

[LUQI88] Luqi and Ketabchi, M., “A Computer-Aided Prototyping System”, IEEE
Software, 5(2), pp. 66-72, 1988.

[LUQI90] Luqi, “A Graph Model for Software Evolution,” IEEE Trans. On Software
Engineering, Vol. 16, No. 8, pp. 917-927, August 1990.

 251

[LUQI91] Luqi, “Computer -Aided Software Prototyping”, IEEE Computer, pp. 111-
112, September 1991.

[LUQI96] Luqi, “System Engineering and Computer -Aided Prototyping”, Journal of
Systems Integration - Special Issue on Computer Aided Prototyping , 6(1),
pp. 15-17, 1996.

[MCDO01] McDonald III, A., “The Design and Development of a Web-Interface for
the Software Engineering Automation System”, Master’s Thesis, Naval
Postgraduate School, Monterey, California, September 2001.

[MUSE95a] Musen, M. A., Gennari, J. H., Eriksson, H., Tu, S. W., and Puerta, A. R.
(1995a), “PROTÉGÉ-II: Computer Support for Development of Intelligent
systems from libraries of components, “in: Proceedings of MEDINFO 95,
Eighth World Congress on Medical Informatics, pp. 766-770, Vancouver
British Columbia, 1995.

[MUSE98] Musen, M. A., [http://citeseer.nj.nec.com/context/1016887/352445], 1998;
37(4-5): 540-550.

[OVER02] “Overview of Dharma Guideline Model,” [http://smi-
web.stanford.edu/projects/eon/DharmaUserGuide/overview.html], 20
October 2002.

[PROT02] Protégé, [http://protege.stanford.edu], 20 October 2002.

[PUET02] Puett, J., “Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools and Models,” Proc. 24th Intl.
Conf. on Software Engr. , Orlando Florida, May 2002.

[PUET03] Puett, J., “Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools,” Draft PhD Dessertation,
Computer Science Department, Naval Postgraduate School, Monterey
California, 2003.

[RATI02] Rational RequisitePro User’s Guide, Version 2002.05.00.

[SOEN02] “Software Engineering,” [http://www.daml.org/ontologies/9], 21
November 2002.

[SOFT02] “Software,” [http://www.daml.org/ontologies/151], 21 November 2002.

[SOWA00] Sowa, J. F., “Knowledge Representation, Logical, Philosophical, and
Computational Foundations,” Publisher Brooks/Cole, 2000.

 252

[UNDE02] “Understanding and Implementing Stakeholder Needs: the Integration of
Rational ClearQuest and Rational RequisitePro,” A Rational Software
Corporation White Paper,
[http://www.rational.com/media/whitepapers/CQ_ReqPro.pdf], 26
October 2002.

[USCH96] Uschold, M. and Gruninger, M., “Ontologies: Principles, Methods and
Applications,” Knowledge Engineering Review, Vol. 11, No. 2, June 1996.

[USCH98] Uschold, M., King, M., Moralee, S., and Zorgios, Y., “The Entreprise
Ontology,” Knowledge Engineering Review, Vol. 13, Special Issue on
Putting Ontologies to Use, 1998.

[USER02] User Interface Manual (Section 2), p. 2,
[http://wwwcaps.cs.nps.navy.mil/Manuals/User_Interface/section_2.html],
26 October 2002.

[YOUN01] Young, P., Ge Jun, Berzins, V. and Luqi, “Using an Object Oriented
Model for Resolving Representational Differences Between
Heterogeneous Systems,” Proceedings of the Monterey Workshop 2001,
June 2001.

[YOUN02] Young, P., “Heterogeneous Software System Interoperability Through
Computer-Aided Resolution of Modeling Differences,” Ph.D.
Dissertation, Computer Science Department, Naval Postgraduate School,
Monterey, California, June 2002.

 253

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Director, Personnel and Training
Tunisian Ministry of Defense
Boulevard Bab Mnara
1008 Tunis, Tunisia

4. Embassy of Tunisia
Office of the Military Attaché
Washington, D.C.

5. Professor Man-Tak Shing
Naval Postgraduate School
Monterey, California

6. LTC Joseph Puett

Naval Postgraduate School
Monterey, California

7. Professor Peter Denning

Naval Postgraduate School
Monterey, California

